1887

Abstract

A bacterial strain, designated KBP-30, was isolated from a water sample taken from the Banping Lake Wetland Park in Taiwan and characterized taxonomically using a polyphasic approach. Cells of strain KBP-30 were Gram-stain-negative, aerobic, motile by gliding rods that were covered by large capsules and formed red colonies. Growth occurred at 10–37 °C (optimum 20 °C), at pH 6–8 (optimum pH 6) and with 0–1 % NaCl (optimum 0 %). Phylogenetic analyses based on 16S rRNA gene sequences showed that strain KBP-30 belonged to the genus and was most closely related to Myx 2105 with a sequence similarity of 97.7 %; 16S rRNA gene sequence similarities were less than 95.1 % with other members of the genus. Strain KBP-30 contained iso-C, summed feature 4 (iso-C I and/or anteiso-C B), anteiso-C, iso-C 3-OH and summed feature 3 (Cω7 and/or Cω6) as the predominant fatty acids. The major isoprenoid quinone was MK-7. The polar lipid profile consisted of phosphatidylethanolamine, three unidentified aminophospholipids, an unidentified aminolipid, an unidentified glycolipid and eight unidentified lipids. The major polyamine was homospermidine. The DNA G+C content of the genomic DNA was 60.3 mol%. The DNA–DNA relatedness of strain KBP-30 with respect to Myx 2105 was less than 42 %. On the basis of the phylogenetic inference and phenotypic data, strain KBP-30 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is KBP-30 ( = LMG 27293 = KCTC 32237).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000915
2016-03-01
2020-12-05
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/3/1546.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000915&mimeType=html&fmt=ahah

References

  1. Anzai Y., Kudo Y., Oyaizu H.. 1997; The phylogeny of the genera Chryseomonas, Flavimonas, and Pseudomonas supports synonymy of these three genera. Int J Syst Bacteriol47:249–251 [CrossRef][PubMed]
    [Google Scholar]
  2. Bernardet J.-F., Nakagawa Y., Holmes B.. Subcommittee on the taxonomy of Flavobacterium and Cytophaga-like bacteria of the International Committee on Systematics of Prokaryotes 2002; Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol52:1049–1070[PubMed]
    [Google Scholar]
  3. Bowman J. P.. 2000; Description of Cellulophaga algicola sp. nov. isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. Int J Syst Evol Microbiol50:1861–1868 [CrossRef][PubMed]
    [Google Scholar]
  4. Breznak J. A., Costilow R. N.. 2007; Physicochemical factors in growth. In Methods for General and Molecular Bacteriology, 3rd edn. pp309–329Edited by Beveridge T. J., Breznak J. A., Marzluf G. A., Schmidt T. M., Snyder L. R.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  5. Buczolits S., Denner E. B. M., Kämpfer P., Busse H.-J.. 2006; Proposal of Hymenobacter norwichensis sp. nov., classification of ‘Taxeobacter ocellatus’, ‘Taxeobacter gelupurpurascens’ and ‘Taxeobacter chitinovorans’ as Hymenobacter ocellatus sp. nov., Hymenobacter gelipurpurascens sp. nov. and Hymenobacter chitinivorans sp. nov., respectively, and emended description of the genus Hymenobacter Hirsch et al. 1999. Int J Syst Evol Microbiol56:2071–2078 [CrossRef][PubMed]
    [Google Scholar]
  6. Busse H.-J., Auling G.. 1988; Polyamine pattern as chemotaxonomic marker within the Proteobacteria . Syst Appl Microbiol11:1–8 [CrossRef]
    [Google Scholar]
  7. Busse H.-J., Bunka S., Hensel A., Lubitz W.. 1997; Discrimination of members of the family Pasteurellaceae based on polyamine patterns. Int J Syst Bacteriol47:698–708 [CrossRef]
    [Google Scholar]
  8. Chang S. C., Wang J. T., Vandamme P., Hwang J. H., Chang P. S., Chen W. M.. 2004; Chitinimonas taiwanensis gen. nov., sp. nov., a novel chitinolytic bacterium isolated from a freshwater pond for shrimp culture. Syst Appl Microbiol27:43–49 [CrossRef][PubMed]
    [Google Scholar]
  9. Chen W. M., Laevens S., Lee T. M., Coenye T., De Vos P., Mergeay M., Vandamme P.. 2001; Ralstonia taiwanensis sp. nov., isolated from root nodules of Mimosa species and sputum of a cystic fibrosis patient. Int J Syst Evol Microbiol51:1729–1735 [CrossRef][PubMed]
    [Google Scholar]
  10. Cole J. R., Wang Q., Cardenas E., Fish J., Chai B., Farris R. J., Kulam-Syed-Mohideen A. S., McGarrell D. M., Marsh T., other authors. 2009; The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res37: Database issueD141–D145 [CrossRef][PubMed]
    [Google Scholar]
  11. Collins M. D.. 1994; Isoprenoid quinones. In Chemical Methods in Prokaryotic Systematics pp265–309Edited by Goodfellow M., O'Donnell A. G.. Chichester: Wiley;
    [Google Scholar]
  12. Embley T. M., Wait R.. 1994; Structural lipids of eubacteria. In Chemical Methods in Prokaryotic Systematics pp121–161Edited by Goodfellow M., O'Donnell A. G.. Chichester: Wiley;
    [Google Scholar]
  13. Ezaki T., Hashimoto Y., Yabuuchi E.. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol39:224–229 [CrossRef]
    [Google Scholar]
  14. Felsenstein J.. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  15. Felsenstein J.. 1993; phylip (phylogeny inference package), version 3.5c. Distributed by the author Department of Genome Sciences, University of Washington; Seattle, USA:
  16. Hall T. A.. 1999; BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser41:95–98
    [Google Scholar]
  17. Han L., Wu S.-J., Qin C.-Y., Zhu Y.-H., Lu Z.-Q., Xie B., Lv J.. 2014; Hymenobacter qilianensis sp. nov., isolated from a subsurface sandstone sediment in the permafrost region of Qilian Mountains, China and emended description of the genus Hymenobacter . Antonie van Leeuwenhoek105:971–978 [CrossRef][PubMed]
    [Google Scholar]
  18. Hirsch P., Ludwig W., Hethke C., Sittig M., Hoffmann B., Gallikowski C. A.. 1998; Hymenobacter roseosalivarius gen. nov., sp. nov. from continental Antarctic soils and sandstone: bacteria of the Cytophaga/Flavobacterium/Bacteroides line of phylogenetic descent. Syst Appl Microbiol21:374–383 [CrossRef][PubMed]
    [Google Scholar]
  19. Kang J. Y., Chun J., Choi A., Moon S. H., Cho J. C., Jahng K. Y.. 2013; Hymenobacter koreensis sp. nov. and Hymenobacter saemangeumensis sp. nov., isolated from estuarine water. Int J Syst Evol Microbiol63:4568–4573 [CrossRef][PubMed]
    [Google Scholar]
  20. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H., other authors. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  21. Kimura M.. 1983; The Neutral Theory of Molecular Evolution Cambridge: Cambridge University Press; [CrossRef]
    [Google Scholar]
  22. Kluge A. G., Farris J. S.. 1969; Quantitative phyletics and the evolution of anurans. Syst Zool18:1–32 [CrossRef]
    [Google Scholar]
  23. Ludwig W., Euzéby J., Whitman W. B.. 2011; Taxonomic outlines of the phyla Bacteroidetes, Spirochaetes, Tenericutes (Mollicutes), Acidobacteria, Fibrobacteres, Fusobacteria, Dictyoglomi, Gemmatimonadetes, Lentisphaerae, Verrucomicrobia, Chlamydiae, and Planctomycetes . In Bergey's Manual of Systematic Bacteriology, 2nd edn.vol. 4 pp21–24Edited by Whitman W.. Baltimore: Williams & Wilkins;
    [Google Scholar]
  24. Mesbah M., Premachandran U., Whitman W. B.. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol39:159–167 [CrossRef]
    [Google Scholar]
  25. Murray R. G. E., Doetsch R. N., Robinow C. F.. 1994; Determinative and cytological light microscopy. In Methods for General and Molecular Bacteriology pp21–41Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  26. Powers E. M.. 1995; Efficacy of the Ryu nonstaining KOH technique for rapidly determining gram reactions of food-borne and waterborne bacteria and yeasts. Appl Environ Microbiol61:3756–3758[PubMed]
    [Google Scholar]
  27. Reichenbach H.. 1992; The order Cytophagales . In The Prokaryotes, 2nd edn.vol. 4 pp3631–3675Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K. H.. New York: Springer;[CrossRef]
    [Google Scholar]
  28. Saitou N., Nei M.. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol4:406–425
    [Google Scholar]
  29. Sasser M.. 1990; Identification of bacteria by gas chromatography of cellular fatty acids MIDI Technical Note 101 Newark, DE: MIDI Inc;
    [Google Scholar]
  30. Schmidt K., Connor A., Britton G.. 1994; Analysis of pigments: carotenoids and related polyenes. In Chemical Methods in Prokaryotic Systematics pp403–461Edited by Goodfellow M., O'Donnell A. G.. Chichester: Wiley;
    [Google Scholar]
  31. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. 2011; mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol28:2731–2739 [CrossRef][PubMed]
    [Google Scholar]
  32. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res25:4876–4882 [CrossRef][PubMed]
    [Google Scholar]
  33. Tindall B. J., Sikorski J., Smibert R. A., Krieg N. R.. 2007; Phenotypic characterization and the principles of comparative systematics. In Methods for General and Molecular Bacteriology, 3rd edn. pp330–393Edited by Beveridge T. J., Breznak J. A., Marzluf G. A., Schmidt T. M., Snyder L. R.. Washington, D.C.:: American Society for Microbiology;
    [Google Scholar]
  34. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E., other authors. 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches of bacterial systematics. Int J Syst Bacteriol37:463–464 [CrossRef]
    [Google Scholar]
  35. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J.. 1991; 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol173:697–703[PubMed]
    [Google Scholar]
  36. Wen C. M., Tseng C. S., Cheng C. Y., Li Y. K.. 2002; Purification, characterization and cloning of a chitinase from Bacillus sp., NCTU2. Biotechnol Appl Biochem35:213–219 [CrossRef][PubMed]
    [Google Scholar]
  37. Zhang L., Dai J., Tang Y., Luo X., Wang Y., An H., Fang C., Zhang C.. 2009; Hymenobacter deserti sp. nov., isolated from the desert of Xinjiang, China. Int J Syst Evol Microbiol59:77–82 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000915
Loading
/content/journal/ijsem/10.1099/ijsem.0.000915
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error