1887

Abstract

A bacterial strain designated SLH-16 was isolated from a fish culture pond in Taiwan and characterized using a polyphasic taxonomic approach. Cells of strain SLH-16 were Gram-stain-negative, aerobic, motile rods that were covered by large capsules and formed yellow colonies. Growth occurred at 20–40 °C (optimum, 37–40 °C), at pH 4.0–9.0 (optimum, pH 5.0–6.0) and with 0–0.5 % (w/v) NaCl (optimum, 0 %). Phylogenetic analyses based on 16S rRNA gene sequences showed that strain SLH-16 belonged to the genus and was related most closely to T3-B9 with sequence similarity of 97.3 %. The major fatty acids (>10 %) of strain SLH-16 were Cω7, summed feature 3 (Cω7 and/or Cω6) and C. The major 2-hydroxy fatty acid was C 2-OH. The polar lipid profile consisted of phosphatidylglycerol, phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylmonomethylethanolamine, phosphatidyldimethylethanolamine, sphingoglycolipid, phosphatidylcholine and several uncharacterized lipids. The major polyamine was spermidine. The major isoprenoid quinone was Q-10. The DNA G+C content was 65.2 mol%. The DNA–DNA hybridization value for strain SLH-16 and the type strain of was less than 43.2 %. Phenotypic characteristics of the novel strain also differed from those of the closest related species of the genus . On the basis of the genotypic, chemotaxonomic and phenotypic data, strain SLH-16 represents a novel species in the genus , for which the name sp. nov. is proposed. The type strain is SLH-16 ( = BCRC 80888 = LMG 28418 = KCTC 42194).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000914
2016-03-01
2019-09-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/3/1539.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000914&mimeType=html&fmt=ahah

References

  1. Anzai Y., Kudo Y., Oyaizu H.. ( 1997;). The phylogeny of the genera Chryseomonas, Flavimonas, and Pseudomonas supports synonymy of these three genera. Int J Syst Bacteriol 47: 249–251 [CrossRef] [PubMed].
    [Google Scholar]
  2. Balkwill D. L., Drake G. R., Reeves R. H., Fredrickson J. K., White D. C., Ringelberg D. B., Chandler D. P., Romine M. F., Kennedy D. W., Spadoni C. M.. ( 1997;). Taxonomic study of aromatic-degrading bacteria from deep-terrestrial-subsurface sediments and description of Sphingomonas aromaticivorans sp. nov., Sphingomonas subterranea sp. nov., and Sphingomonas stygia sp. nov. Int J Syst Bacteriol 47: 191–201 [CrossRef] [PubMed].
    [Google Scholar]
  3. Beveridge T. J., Lawrence J. R., Murray R. G. E.. ( 2007;). Sampling and staining for light microscopy. . In Methods for General and Molecular Bacteriology, 3rd edn., pp. 19–33. Edited by Beveridge T. J., Breznak J. A., Marzluf G. A., Schmidt T. M., Snyder L. R.. Washington, DC: American Society for Microbiology;.
    [Google Scholar]
  4. Bowman J. P.. ( 2000;). Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. Int J Syst Evol Microbiol 50: 1861–1868 [CrossRef] [PubMed].
    [Google Scholar]
  5. Breznak J. A., Costilow R. N.. ( 2007;). Physicochemical factors in growth. . In Methods for General and Molecular Bacteriology, 3rd edn., pp. 309–329. Edited by Beveridge T. J., Breznak J. A., Marzluf G. A., Schmidt T. M., Snyder L. R.. Washington, DC: American Society for Microbiology;.
    [Google Scholar]
  6. Busse H. J., Auling G.. ( 1988;). Polyamine pattern as a chemotaxonomic marker within the Proteobacteria. Syst Appl Microbiol 11: 1–8 [CrossRef].
    [Google Scholar]
  7. Busse H. J., Bunka S., Hensel A., Lubitz W.. ( 1997;). Discrimination of members of the family Pasteurellaceae based on polyamine patterns. Int J Syst Bacteriol 47: 698–708 [CrossRef].
    [Google Scholar]
  8. Chen W. M., Laevens S., Lee T. M., Coenye T., De Vos P., Mergeay M., Vandamme P.. ( 2001;). Ralstonia taiwanensis sp. nov., isolated from root nodules of Mimosa species and sputum of a cystic fibrosis patient. Int J Syst Evol Microbiol 51: 1729–1735 [CrossRef] [PubMed].
    [Google Scholar]
  9. Cole J. R., Wang Q., Cardenas E., Fish J., Chai B., Farris R. J., Kulam-Syed-Mohideen A. S., McGarrell D. M., Marsh T., other authors. ( 2009;). The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 37: D141–D145 [CrossRef] [PubMed].
    [Google Scholar]
  10. Collins M. D.. ( 1994;). Isoprenoid quinones. . In Chemical Methods in Prokaryotic Systematics, pp. 265–309. Edited by Goodfellow M., O'Donnell A. G.. Chichester: Wiley;.
    [Google Scholar]
  11. Embley T. M., Wait R.. ( 1994;). Structural lipids of eubacteria. . In Chemical Methods in Prokaryotic Systematics, pp. 121–161. Edited by Goodfellow M., O'Donnell A. G.. Chichester: Wiley;.
    [Google Scholar]
  12. Ezaki T., Hashimoto Y., Yabuuchi E.. ( 1989;). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39: 224–229 [CrossRef].
    [Google Scholar]
  13. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17: 368–376 [CrossRef] [PubMed].
    [Google Scholar]
  14. Felsenstein J.. ( 1993;). phylip (phylogeny inference package) version 3.5c. Distributed by the author Department of Genome Sciences, University of Washington; Seattle, USA:.
    [Google Scholar]
  15. Hall T. A.. ( 1999;). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41: 95–98.
    [Google Scholar]
  16. Kämpfer P., Witzenberger R., Denner E. B. M., Busse H.-J., Neef A.. ( 2002;). Novosphingobium hassiacum sp. nov., a new species isolated from an aerated sewage pond. Syst Appl Microbiol 25: 37–45 [CrossRef] [PubMed].
    [Google Scholar]
  17. Kämpfer P., Martin K., McInroy J. A., Glaeser S. P.. ( 2015;). Proposal of Novosphingobium rhizosphaerae sp. nov., isolated from the rhizosphere. Int J Syst Evol Microbiol 65: 195–200 [CrossRef] [PubMed].
    [Google Scholar]
  18. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H., other authors. ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62: 716–721 [CrossRef] [PubMed].
    [Google Scholar]
  19. Kimura M.. ( 1983;). The Neutral Theory of Molecular Evolution Cambridge:: Cambridge University Press; [CrossRef].
    [Google Scholar]
  20. Kluge A. G., Farris F. S.. ( 1969;). Quantitative phyletics and the evolution of anurans. Syst Zool 18: 1–32 [CrossRef].
    [Google Scholar]
  21. Lin S. Y., Hameed A., Liu Y. C., Hsu Y. H., Lai W. A., Huang H. I., Young C. C.. ( 2014;). Novosphingobium arabidopsis sp. nov., a novel DDT-resistant bacterium isolated from the rhizosphere of Arabidopsis thaliana. Int J Syst Evol Microbiol 64: 594–598 [CrossRef] [PubMed].
    [Google Scholar]
  22. Liu Z.-P., Wang B.-J., Liu Y.-H., Liu S.-J.. ( 2005;). Novosphingobium taihuense sp. nov., a novel aromatic-compound-degrading bacterium isolated from Taihu Lake, China. Int J Syst Evol Microbiol 55: 1229–1232 [CrossRef] [PubMed].
    [Google Scholar]
  23. Mesbah M., Premachandran U., Whitman W. B.. ( 1989;). Precise measurement of the GC content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39: 159–167 [CrossRef].
    [Google Scholar]
  24. Murray R. G. E., Doetsch R. N., Robinow C. F.. ( 1994;). Determinative and cytological light microscopy. . In Methods for General and Molecular Bacteriology, pp. 21–41. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R.. Washington, DC: American Society for Microbiology;.
    [Google Scholar]
  25. Nokhal T. H., Schlegel H. G.. ( 1983;). Taxonomic study of Paracoccus denitrificans. Int J Syst Bacteriol 33: 26–37 [CrossRef].
    [Google Scholar]
  26. Powers E. M.. ( 1995;). Efficacy of the Ryu nonstaining KOH technique for rapidly determining gram reactions of food-borne and waterborne bacteria and yeasts. Appl Environ Microbiol 61: 3756–3758 [PubMed].
    [Google Scholar]
  27. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425 [PubMed].
    [Google Scholar]
  28. Sasser M.. ( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids MIDI Technical Note 101 Newark, DE: MIDI Inc;.
    [Google Scholar]
  29. Takeuchi M., Hamana K., Hiraishi A.. ( 2001;). Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol 51: 1405–1417 [CrossRef] [PubMed].
    [Google Scholar]
  30. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28: 2731–2739 [CrossRef] [PubMed].
    [Google Scholar]
  31. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25: 4876–4882 [CrossRef] [PubMed].
    [Google Scholar]
  32. Tiirola M. A., Busse H.-J., Kämpfer P., Männistö M. K.. ( 2005;). Novosphingobium lentum sp. nov., a psychrotolerant bacterium from a polychlorophenol bioremediation process. Int J Syst Evol Microbiol 55: 583–588 [CrossRef] [PubMed].
    [Google Scholar]
  33. Tindall B. J., Sikorski J., Smibert R. A., Krieg N. R.. ( 2007;). Phenotypic characterization and the principles of comparative systematics. . In Methods for General and Molecular Bacteriology, 3rd edn., pp. 330–393. Edited by Beveridge T. J., Breznak J. A., Marzluf G. A., Schmidt T. M., Snyder L. R.. Washington, DC: [CrossRef] American Society for Microbiology;.
    [Google Scholar]
  34. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E., other authors. ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37: 463–464 [CrossRef].
    [Google Scholar]
  35. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J.. ( 1991;). 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173: 697–703 [PubMed].
    [Google Scholar]
  36. Wen C. M., Tseng C. S., Cheng C. Y., Li Y. K.. ( 2002;). Purification, characterization and cloning of a chitinase from Bacillus sp. NCTU2. Biotechnol Appl Biochem 35: 213–219 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000914
Loading
/content/journal/ijsem/10.1099/ijsem.0.000914
Loading

Data & Media loading...

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error