1887

Abstract

A Gram-staining-negative, strictly aerobic, rod-shaped and bright-yellow-pigmented bacterium, motile by means of a single polar flagellum, designated THG-MD21, was isolated from rhizosphere soil of in Henan province, PR China. On the basis of 16S rRNA gene sequence similarity, strain THG-MD21 belongs to the genus and was most closely related to B9 (98.2 % sequence similarity), Gsoil 068 (97.2 %) and FR1330 (97.0 %). The DNA G+C content was 64.4 mol%. The DNA–DNA relatedness between strain THG-MD21 and its closest phylogenetic neighbours was below 30.0 %. The only isoprenoid quinone detected in strain THG-MD21 was ubiquinone-8.The major polar lipids were found to be phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol, and the predominant fatty acids were iso-C, iso-C, iso-C, C and iso-Cω9. The DNA–DNA hybridization result and characteristics revealed by a polyphasic study showed that strain THG-MD21 represents a novel species, for which the name sp. nov. is proposed. The type strain is THG-MD21 ( = KACC 18131 = JCM 30122).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000901
2016-05-01
2020-04-07
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/5/1920.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000901&mimeType=html&fmt=ahah

References

  1. Baik K. S., Park S. C., Kim M. S., Kim E. M., Park C., Chun J., Seong C. N.. 2008; Luteimonas marina sp. nov., isolated from seawater. Int J Syst Evol Microbiol58:2904–2908 [CrossRef][PubMed]
    [Google Scholar]
  2. Chou J. H., Cho N. T., Arun A. B., Young C. C., Chen W. M.. 2008; Luteimonas aquatica sp. nov., isolated from fresh water from Southern Taiwan. Int J Syst Evol Microbiol58:2051–2055 [CrossRef][PubMed]
    [Google Scholar]
  3. Collins M. D., Jones D.. 1981; Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. Microbiol Rev45:316–354[PubMed]
    [Google Scholar]
  4. Ezaki T., Hashimoto Y., Yabuuchi E.. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol39:224–229 [CrossRef]
    [Google Scholar]
  5. Fan X., Yu T., Li Z., Zhang X. H.. 2014; Luteimonas abyssi sp. nov., isolated from deep-sea sediment. Int J Syst Evol Microbiol64:668–674 [CrossRef][PubMed]
    [Google Scholar]
  6. Felsenstein J.. 1985; Confidence limit on phylogenies: an approach using the bootstrap. Evolution39:783–791 [CrossRef]
    [Google Scholar]
  7. Finkmann W., Altendorf K., Stackebrandt E., Lipski A.. 2000; Characterization of N2O-producing Xanthomonas-like isolates from biofilters as Stenotrophomonas nitritireducens sp. nov., Luteimonas mephitis gen. nov., sp. nov. and Pseudoxanthomonas broegbernensis gen. nov., sp. nov. Int J Syst Evol Microbiol50:273–282 [CrossRef][PubMed]
    [Google Scholar]
  8. Frank J. A., Reich C. I., Sharma S., Weisbaum J. S., Wilson B. A., Olsen G. J.. 2008; Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Appl Environ Microbiol74:2461–2470 [CrossRef][PubMed]
    [Google Scholar]
  9. Gillis M., De Ley J., De Cleene M.. 1970; The determination of molecular weight of bacterial genome DNA from renaturation rates. Eur J Biochem12:143–153 [CrossRef][PubMed]
    [Google Scholar]
  10. Hall T. A.. 1999; BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser41:95–98
    [Google Scholar]
  11. Hiraishi A., Ueda Y., Ishihara J., Mori T.. 1996; Comparative lipoquinone analysis of influent sewage and activated sludge by high-performance liquid chromatography and photodiode array detection. J Gen Appl Microbiol42:457–469 [CrossRef]
    [Google Scholar]
  12. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H., other authors. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  13. Kimura M.. 1983; The Neutral Theory of Molecular Evolution Cambridge: Cambridge University Press; [CrossRef]
    [Google Scholar]
  14. Lipski A., Stackebrandt E.. 2005; Genus III. Luteimonas Finkmann, Altendorf, Stackebrandt and Lipski 2000, 280VP. In Bergey's Manual of Systematic Bacteriology, 2nd edn.vol. 2 pp93–94Edited by Brenner D. J., Krieg N. R., Staley J. T., Garrity G. M.. New York: Springer;
    [Google Scholar]
  15. McConaughy B. L., Laird C. D., McCarthy B. J.. 1969; Nucleic acid reassociation in formamide. Biochemistry8:3289–3295 [CrossRef][PubMed]
    [Google Scholar]
  16. Mesbah M., Premachandran U., Whitman W. B.. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol39:159–167 [CrossRef]
    [Google Scholar]
  17. Minnikin D. E., Patel P. V., Alshamaony L., Goodfellow M.. 1977; Polar lipid composition in the classification of Nocardia and related bacteria. Int J Syst Bacteriol27:104–117 [CrossRef]
    [Google Scholar]
  18. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parleet J. H.. 1984; An integrated procedure for the extraction of bacterial isoprenoid quinines and polar lipids. J Microbiol Methods2:233–241 [CrossRef]
    [Google Scholar]
  19. Moore D. D., Dowhan D.. 1995; Preparation and analysis of DNA. In Current Protocols in Molecular Biology pp2–11Edited by Ausubel F. W., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K.. New York: Wiley;
    [Google Scholar]
  20. Park Y. J., Park M. S., Lee S. H., Park W., Lee K., Jeon C. O.. 2011; Luteimonas lutimaris sp. nov., isolated from a tidal flat. Int J Syst Evol Microbiol61:2729–2733 [CrossRef][PubMed]
    [Google Scholar]
  21. Roh S. W., Kim K. H., Nam Y. D., Chang H. W., Kim M. S., Yoon J. H., Oh H. M., Bae J. W.. 2008; Luteimonas aestuarii sp. nov., isolated from tidal flat sediment. J Microbiol46:525–529 [CrossRef][PubMed]
    [Google Scholar]
  22. Romanenko L. A., Tanaka N., Svetashev V. I., Kurilenko V. V., Mikhailov V. V.. 2013; Luteimonas vadosa sp. nov., isolated from seashore sediment. Int J Syst Evol Microbiol63:1261–1266 [CrossRef][PubMed]
    [Google Scholar]
  23. Saitou N., Nei M.. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol4:406–425
    [Google Scholar]
  24. Sasser M.. 1990; Identification of bacteria by gas chromatography of cellular fatty acids MIDI Technical Note 101 Newark, DE: MIDI Inc;
    [Google Scholar]
  25. Stabili L., Gravili C., Tredici S. M., Piraino S., Talà A., Boero F., Alifano P.. 2008; Epibiotic Vibrio luminous bacteria isolated from some hydrozoa and bryozoa species. Microb Ecol56:625–636 [CrossRef][PubMed]
    [Google Scholar]
  26. Stackebrandt E., Goebel B. M.. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol44:846–849 [CrossRef]
    [Google Scholar]
  27. Sun Z. B., Zhang H., Yuan X. F., Wang Y. X., Feng D. M., Wang Y. H., Feng Y. J.. 2012; Luteimonas cucumeris sp. nov., isolated a from cucumber leaf. Int J Syst Evol Microbiol62:2916–2920 [CrossRef][PubMed]
    [Google Scholar]
  28. Tamaoka J., Katayama-Fujiruma Y., Kuraishi H.. 1983; Analysis of bacterial menaquinone mixtures by high performance liquid chromatography. J Appl Bacteriol54:31–36 [CrossRef]
    [Google Scholar]
  29. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. 2011; mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol28:2731–2739 10.1093/m olbev/msr121[PubMed]
    [Google Scholar]
  30. Ten L. N., Jung H. M., Im W. T., Yoo S. A., Oh H. M., Lee S. T.. 2009; Lysobacter panaciterrae sp. nov., isolated from soil of a ginseng field. Int J Syst Evol Microbiol59:958–963 [CrossRef][PubMed]
    [Google Scholar]
  31. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res25:4876–4882 [CrossRef][PubMed]
    [Google Scholar]
  32. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P.A.D., Kandler O., Krichevsky M. I., Moore L. H., Moore W.E.C., Murray R.G.E., other authors. 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol37:463–464 [CrossRef]
    [Google Scholar]
  33. Wu G., Liu Y., Li Q., Du H., You J., Li H., Ke C., Zhang X., Yu J., Zhao T.. 2013; Luteimonas huabeiensis sp. nov., isolated from stratum water. Int J Syst Evol Microbiol63:3352–3357 [CrossRef][PubMed]
    [Google Scholar]
  34. Xin Y., Cao X., Wu P., Xue S.. 2014; Luteimonas dalianensis sp. nov., an obligate marine bacterium isolated from seawater. J Microbiol52:729–733 [CrossRef][PubMed]
    [Google Scholar]
  35. Young C. C., Kämpfer P., Chen W. M., Yen W. S., Arun A. B., Lai W. A., Shen F. T., Rekha P. D., Lin K. Y., Chou J. H.. 2007; Luteimonas composti sp. nov., a moderately thermophilic bacterium isolated from food waste. Int J Syst Evol Microbiol57:741–744 [CrossRef][PubMed]
    [Google Scholar]
  36. Zhang D. C., Liu H. C., Xin Y. H., Zhou Y. G., Schinner F., Margesin R.. 2010; Luteimonas terricola sp. nov., a psychrophilic bacterium isolated from soil. Int J Syst Evol Microbiol60:1581–1584 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000901
Loading
/content/journal/ijsem/10.1099/ijsem.0.000901
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error