1887

Abstract

Six strains of anaerobic bacteria, C13EG70, C13EG118, C13EG186, C13GAMG5, C13GAMG28 and C13GAMG40, were isolated from the caecum of a healthy chicken bred in Bogor, Indonesia. Phylogenetic analysis showed the isolates were separated into two groups. Group I (C13EG70 and C13EG118) showed nearly identical 16S rRNA gene sequences (99.9 % sequence similarity). Group II (C13EG186, C13GAMG5, C13GAMG28 and C13GAMG40) showed nearly identical 16S rRNA gene sequences (>99.4 % sequence similarity). The isolates showed low 16S rRNA gene sequence similarities to recognized species of the genus . High gene sequence similarities were found between type strains (C13EG70 and C13EG186) and JCM 13657 (87.9, 91.5 %, respectively). Physiological, biochemical and genotypic characteristics demonstrated that these strains could be separated from the type strain of . It is concluded that Group I and Group II represent novel species. Two novel species of the genus are proposed as sp. nov. (type strain C13EG70 = LIPI12-4-Ck732 = JSAT12-4-Ck732 = InaCC B449 = NBRC 110958) and sp. nov. (type strain C13EG186 = LIPI12-4-Ck844 = JSAT12-4-Ck884 = InaCC B451 = NBRC 110963).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000899
2016-03-01
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/3/1431.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000899&mimeType=html&fmt=ahah

References

  1. Collins M. D., Jones D.. ( 1981;). Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. Microbiol Rev 45: 316–354 [PubMed].
    [Google Scholar]
  2. Darriba D., Taboada G. L., Doallo R., Posada D.. ( 2012;). jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9: 772 [CrossRef] [PubMed].
    [Google Scholar]
  3. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791 [CrossRef].
    [Google Scholar]
  4. Guindon S., Gascuel O.. ( 2003;). A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52: 696–704 [CrossRef] [PubMed].
    [Google Scholar]
  5. Holdeman L. V., Cato E. P., Moore W. E. C.. (editors) ( 1977;). Anaerobe Laboratory Manual, 4th edn.., Blacksburg, VA: Virginia Polytechnic Institute and State University;.
    [Google Scholar]
  6. Kimura M.. ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16: 111–120 [CrossRef] [PubMed].
    [Google Scholar]
  7. Kitahara M., Takamine F., Imamura T., Benno Y.. ( 2001;). Clostridium hiranonis sp. nov., a human intestinal bacterium with bile acid 7α-dehydroxylating activity. Int J Syst Evol Microbiol 51: 39–44 [CrossRef] [PubMed].
    [Google Scholar]
  8. Kitahara M., Sakamoto M., Benno Y.. ( 2010;). Lactobacillus similis sp. nov., isolated from fermented cane molasses. Int J Syst Evol Microbiol 60: 187–190 [CrossRef] [PubMed].
    [Google Scholar]
  9. Komagata K., Suzuki K.. ( 1987;). Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19: 161–207 [CrossRef].
    [Google Scholar]
  10. Lan P. T., Hayashi H., Sakamoto M., Benno Y.. ( 2002;). Phylogenetic analysis of cecal microbiota in chicken by the use of 16S rDNA clone libraries. Microbiol Immunol 46: 371–382 [CrossRef] [PubMed].
    [Google Scholar]
  11. Lan P. T., Sakamoto M., Sakata S., Benno Y.. ( 2006;). Bacteroides barnesiae sp. nov., Bacteroides salanitronis sp. nov. and Bacteroides gallinarum sp. nov., isolated from chicken caecum. Int J Syst Evol Microbiol 56: 2853–2859 [CrossRef] [PubMed].
    [Google Scholar]
  12. Larkin M. A., Blackshields G., Brown N. P., Chenna R., McGettigan P. A., McWilliam H., Valentin F., Wallace I. M., Wilm A., other authors. ( 2007;). Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947–2948 [CrossRef] [PubMed].
    [Google Scholar]
  13. Lu J., Idris U., Harmon B., Hofacre C., Maurer J. J., Lee M. D.. ( 2003;). Diversity and succession of the intestinal bacterial community of the maturing broiler chicken. Appl Environ Microbiol 69: 6816–6824 [CrossRef] [PubMed].
    [Google Scholar]
  14. Mayberry W. R., Lambe D. W. Jr, Ferguson K. P.. ( 1982;). Identification of Bacteroides species by cellular fatty acid profiles. Int J Syst Bacteriol 32: 21–27 [CrossRef].
    [Google Scholar]
  15. Miyagawa E., Azuma R., Suto T.. ( 1979;). Cellular fatty acid composition in gram-negative obligately anaerobic rods. J Gen Appl Microbiol 25: 41–51 [CrossRef].
    [Google Scholar]
  16. Qu A., Brulc J. M., Wilson M. K., Law B. F., Theoret J. R., Joens L. A., Konkel M. E., Angly F., Dinsdale E. A., other authors. ( 2008;). Comparative metagenomics reveals host specific metavirulomes and horizontal gene transfer elements in the chicken cecum microbiome. PLoS One 3: e2945 [CrossRef] [PubMed].
    [Google Scholar]
  17. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425 [PubMed].
    [Google Scholar]
  18. Sakamoto M., Ohkuma M.. ( 2010;). Usefulness of the hsp60 gene for the identification and classification of Gram-negative anaerobic rods. J Med Microbiol 59: 1293–1302 [CrossRef] [PubMed].
    [Google Scholar]
  19. Sakamoto M., Ohkuma M.. ( 2011;). Identification and classification of the genus Bacteroides by multilocus sequence analysis. Microbiology 157: 3388–3397 [CrossRef] [PubMed].
    [Google Scholar]
  20. Sakamoto M., Ohkuma M.. ( 2013;). Bacteroides reticulotermitis sp. nov., isolated from the gut of a subterranean termite (Reticulitermes speratus). Int J Syst Evol Microbiol 63: 691–695 [CrossRef] [PubMed].
    [Google Scholar]
  21. Sakamoto M., Suzuki M., Umeda M., Ishikawa I., Benno Y.. ( 2002;). Reclassification of Bacteroides forsythus (Tanner et al. 1986) as Tannerella forsythensis corrig., gen. nov., comb. nov. Int J Syst Evol Microbiol 52: 841–849 [PubMed].
    [Google Scholar]
  22. Sakamoto M., Suzuki M., Huang Y., Umeda M., Ishikawa I., Benno Y.. ( 2004;). Prevotella shahii sp. nov. and Prevotella salivae sp. nov., isolated from the human oral cavity. Int J Syst Evol Microbiol 54: 877–883 [CrossRef] [PubMed].
    [Google Scholar]
  23. Sakamoto M., Huang Y., Umeda M., Ishikawa I., Benno Y.. ( 2005;). Prevotella multiformis sp. nov., isolated from human subgingival plaque. Int J Syst Evol Microbiol 55: 815–819 [CrossRef] [PubMed].
    [Google Scholar]
  24. Sakamoto M., Suzuki N., Benno Y.. ( 2010;). hsp60 and 16S rRNA gene sequence relationships among species of the genus Bacteroides with the finding that Bacteroides suis and Bacteroides tectus are heterotypic synonyms of Bacteroides pyogenes. Int J Syst Evol Microbiol 60: 2984–2990 [CrossRef] [PubMed].
    [Google Scholar]
  25. Sakamoto M., Tanaka Y., Benno Y., Ohkuma M.. ( 2014;). Butyricimonas faecihominis sp. nov. and Butyricimonas paravirosa sp. nov., isolated from human faeces, and emended description of the genus Butyricimonas. Int J Syst Evol Microbiol 64: 2992–2997 [CrossRef] [PubMed].
    [Google Scholar]
  26. Shah H. N.. ( 1992;). The genus Bacteroides and related taxa. . In The Prokaryotes, 2nd edn.., pp. 3593–3607. Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K. H.. New York: Springer; [CrossRef].
    [Google Scholar]
  27. Shah H. N., Collins M. D.. ( 1983;). Genus Bacteroides. A chemotaxonomical perspective. J Appl Bacteriol 55: 403–416 [CrossRef] [PubMed].
    [Google Scholar]
  28. Song Y., Liu C., Finegold S. M.. ( 2011;). Genus I. Bacteroides Castellani and Chalmers 1919, 959AL emend. Shah and Collins 1989, 85. . In Bergey's Manual of Systematic Bacteriology, 2nd edn.. vol. 4, pp. 27–41. Edited by Krieg N. R., Ludwig W., Whitman W. B., Hedlund B. P., Paster B. J., Staley J. T., Ward N. L., Brown D. R., Parte A.. New York: Springer;.
    [Google Scholar]
  29. Tamaoka J., Komagata K.. ( 1984;). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25: 125–128 [CrossRef].
    [Google Scholar]
  30. Thomas D. H., Skadhauge E.. ( 1988;). Transport function and control in bird caeca. Comp Biochem Physiol A 90: 591–596 [CrossRef] [PubMed].
    [Google Scholar]
  31. Zhu X. Y., Zhong T., Pandya Y., Joerger R. D.. ( 2002;). 16S rRNA-based analysis of microbiota from the cecum of broiler chickens. Appl Environ Microbiol 68: 124–137 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000899
Loading
/content/journal/ijsem/10.1099/ijsem.0.000899
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error