1887

Abstract

An obligatory anaerobic, Gram-stain-negative coccobacillus with black-pigmented colonies was isolated from the oral cavity of selected Australian marsupial species. Phenotypic and molecular criteria showed that this bacterium was a distinct species within the genus Porphyromonas , and was closely related to Porphyromonas gingivalis and Porphyromonas gulae . This putative novel species and P. gulae could be differentiated from P. gingivalis by catalase activity. Further characterization by multi-locus enzyme electrophoresis of glutamate dehydrogenase and malate dehydrogenase enzyme mobility and matrix-assisted laser desorption ionization time-of-flight MS showed that this putative novel species could be differentiated phenotypically from P. gingivalis and P. gulae . Definitive identification by 16S rRNA gene sequencing showed that this bacterium belonged to a unique monophyletic lineage, phylogenetically distinct from P. gingivalis (94.9 % similarity) and P. gulae (95.5 %). This also was supported by 16S–23S rRNA intergenic spacer region and glutamate dehydrogenase gene sequencing. A new species epithet, Porphyromonas loveana sp. nov., is proposed for this bacterium, with DSM 28520 (=NCTC 13658=UQD444=MRK101), isolated from a musky rat kangaroo, as the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000898
2016-10-01
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/10/3771.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000898&mimeType=html&fmt=ahah

References

  1. Bemis D. A., Greenacre C. B., Bryant M. J., Jones R. D., Kania S. A..( 2011;). Isolation of a variant Porphyromonas sp. from polymicrobial infections in central bearded dragons (Pogona vitticeps). . J Vet Diagnost Invest 23: 99–104. [CrossRef]
    [Google Scholar]
  2. Bird P. S., Huynh S. C., Davis D., Love D. N., Blackall L. L., Seymour G. J..( 2002;). Oral disease in animals: the Australian perspective. Isolation and characterisation of black-pigmented bacteria from the oral cavity of marsupials. . Anaerobe 8: 79–87. [CrossRef]
    [Google Scholar]
  3. Coil D. A., Alexiev A., Wallis C., O'Flynn C., Deusch O., Davis I., Horsfall A., Kirkwood N., Jospin G. et al.( 2015;). Draft genome sequences of 26 Porphyromonas strains isolated from the canine oral microbiome. . Genome Announc 3: e0018700115. [CrossRef] [PubMed]
    [Google Scholar]
  4. Conrads G., Citron D. M., Tyrrell K. L., Horz H. P., Goldstein E. J..( 2005;). 16S-23S rRNA gene internal transcribed spacer sequences for analysis of the phylogenetic relationships among species of the genus Porphyromonas. . Int J Syst Evol Microbiol 55: 607–613. [CrossRef] [PubMed]
    [Google Scholar]
  5. Cottyn B. G., Boucque C. V..( 1968;). Rapid method for the gas-chromatographic determination of volatile fatty acids in rumen fluid. . J Agric Food Chem 16: 105–107. [CrossRef]
    [Google Scholar]
  6. Davis I. J., Wallis C., Deusch O., Colyer A., Milella L., Loman N., Harris S..( 2013;). A cross-sectional survey of bacterial species in plaque from client owned dogs with healthy gingiva, gingivitis or mild periodontitis. . PLoS One 8: e83158. [CrossRef] [PubMed]
    [Google Scholar]
  7. Felsenstein J..( 1985;). Confidence-limits on phylogenies – an approach using the bootstrap. . Evolution 39: 783–791. [CrossRef]
    [Google Scholar]
  8. Finegold S. M., Vaisanen M. L., Rautio M., Eerola E., Summanen P., Molitoris D., Song Y., Liu C., Jousimies-Somer H..( 2004;). Porphyromonas uenonis sp. nov., a pathogen for humans distinct from P. asaccharolytica and P. endodontalis. . J Clin Microbiol 42: 5298–5301. [CrossRef] [PubMed]
    [Google Scholar]
  9. Fournier D., Mouton C..( 1993;). Phenotypic characterization of human and animal biotypes within the species Porphyromonas gingivalis. . Res Microbiol 144: 435–444. [CrossRef] [PubMed]
    [Google Scholar]
  10. Fournier D., Mouton C., Lapierre P., Kato T., Okuda K., Ménard C..( 2001;). Porphyromonas gulae sp. nov., an anaerobic, gram-negative coccobacillus from the gingival sulcus of various animal hosts. . Int J Syst Evol Microbiol 51: 1179–1189. [CrossRef] [PubMed]
    [Google Scholar]
  11. Giannitti F., Schapira A., Anderson M., Clothier K..( 2014;). Suppurative otitis and ascending meningoencephalitis associated with Bacteroides tectus and Porphyromonas gulae in a captive Parma wallaby (Macropus parma) with toxoplasmosis. . J Vet Diagnost Invest 26: 683–688. [CrossRef]
    [Google Scholar]
  12. Hajishengallis G., Darveau R. P., Curtis M. A..( 2012;). The keystone-pathogen hypothesis. . Nat Rev Microbiol 10: 717–725. [CrossRef] [PubMed]
    [Google Scholar]
  13. Hirasawa M., Takada K..( 1994;). Porphyromonas gingivicanis sp. nov. and Porphyromonas crevioricanis sp. nov., isolated from beagles. . Int J Syst Bacteriol 44: 637–640. [CrossRef] [PubMed]
    [Google Scholar]
  14. Jousimies-Somer H., Summanen P..( 2002;). Recent taxonomic changes and terminology update of clinically significant anaerobic gram-negative bacteria (excluding spirochetes). . Clin Infect Dis 35: S17–S21. [CrossRef] [PubMed]
    [Google Scholar]
  15. Jousimies-Somer H. R..( 1995;). Update on the taxonomy and the clinical and laboratory characteristics of pigmented anaerobic gram-negative rods. . Clin Infect Dis 20: S187–S191. [CrossRef] [PubMed]
    [Google Scholar]
  16. Jousimies-Somer H. R., Summanen P. H..( 1999;). Bacteroides, Porphyromonas, Prevotella, Fusobacterium and other anaerobic Gram-negative rods and cocci. . In Manual of Clinical Microbiology , pp. 690–738. Edited by Murray P. R.. Washington, DC:: ASM Press;.
    [Google Scholar]
  17. La Scola B., Fournier P. E., Raoult D..( 2011;). Burden of emerging anaerobes in the MALDI-TOF and 16S rRNA gene sequencing era. . Anaerobe 17: 106–112. [CrossRef] [PubMed]
    [Google Scholar]
  18. Loos B. G., Dyer D. W., Whittam T. S., Selander R. K..( 1993;). Genetic structure of populations of Porphyromonas gingivalis associated with periodontitis and other oral infections. . Infect Immun 61: 204–212.[PubMed]
    [Google Scholar]
  19. Maiden M. F., Tanner A., Macuch P. J..( 1996;). Rapid characterization of periodontal bacterial isolates by using fluorogenic substrate tests. . J Clin Microbiol 34: 376–384.[PubMed]
    [Google Scholar]
  20. Maier T., Kostrzewa M..( 2007;). Fast and reliable MALDI-TOF MS-based microorganism identification. . Chem Today 25: 68–71.
    [Google Scholar]
  21. Mellmann A., Cloud J., Maier T., Keckevoet U., Ramminger I., Iwen P., Dunn J., Hall G., Wilson D. et al.( 2008;). Evaluation of matrix-assisted laser desorption ionization-time-of-flight mass spectrometry in comparison to 16S rRNA gene sequencing for species identification of nonfermenting bacteria. . J Clin Microbiol 46: 1946–1954. [CrossRef] [PubMed]
    [Google Scholar]
  22. Mikkelsen D., Milinovich G. J., Burrell P. C., Huynh S. C., Pettett L. M., Blackall L. L., Trott D. J., Bird P. S..( 2008;). Phylogenetic analysis of Porphyromonas species isolated from the oral cavity of Australian marsupials. . Env Microbiol 10: 2425–2432. [CrossRef]
    [Google Scholar]
  23. Nagy E., Maier T., Urban E., Terhes G., Kostrzewa M.. ESCMID Study Group on Antimicrobial Resistance in Anaerobic Bacteria( 2009;). Species identification of clinical isolates of Bacteroides by matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry. . Clin Microbiol Infect 15: 796–802. [CrossRef] [PubMed]
    [Google Scholar]
  24. Ottenstein D. M., Bartley D. A..( 1971;). Separation of free acids C2–C5 in dilute Aqueous solution column technology. . J Chrom Sci 9: 673–681. [CrossRef]
    [Google Scholar]
  25. Playne M. J..( 1985;). Determination of ethanol, volatile fatty acids, lactic and succinic acids in fermentation liquids by gas chromatography. . J Sci Food Agric 36: 638–644. [CrossRef]
    [Google Scholar]
  26. Pérez-Salcedo L., Herrera D., Esteban-Saltiveri D., Leon R., Jeusette I., Torre C., O'Connor A., Gonzalez I..( 2012;). Isolation and identification of Porphyromonas spp. and other putative pathogens from cats with periodontal disease. . J Vet Dent 30: 208–213. [CrossRef]
    [Google Scholar]
  27. Richardson B. J., Baverstock P. R., Adams M..( 1986;). Allozyme Electrophoresis: A Handbook for Animal Systematics and Population Studies. Sydney:: Academic Press;.
    [Google Scholar]
  28. Saitou N., Nei M..( 1987;). The neighbor-joining method – a new method for reconstructing phylogenetic trees. . Mole Biol Evol 4: 406–425.
    [Google Scholar]
  29. Sakamoto M., Ohkuma M..( 2010;). Usefulness of the hsp60 gene for the identification and classification of gram-negative anaerobic rods. . J Med Microbiol 59: 1293–1302. [CrossRef] [PubMed]
    [Google Scholar]
  30. Selander R. K., Caugant D. A., Ochman H., Musser J. M., Gilmour M. N., Whittam T. S..( 1986;). Methods of multilocus enzyme electrophoresis for bacterial population genetics and systematics. . Appl Environ Microbiol 51: 873.[PubMed]
    [Google Scholar]
  31. Siyambalapitya N..( 2000;). The identification of clones of a population of Porphyromonas gingivalis by the use of multilocus sequence typing. In Department of Microbiology and Parasitology: The University of Queensland.
  32. Summanen P. H., Durmaz B., Väisänen M. L., Liu C., Molitoris D., Eerola E., Helander I. M., Finegold S. M..( 2005;). Porphyromonas somerae sp. nov., a pathogen isolated from humans and distinct from porphyromonas levii. . J Clin Microbiol 43: 4455–4459. [CrossRef] [PubMed]
    [Google Scholar]
  33. Summanen P. H., Lawson P. A., Finegold S. M..( 2009;). Porphyromonas bennonis sp. nov., isolated from human clinical specimens. . Int J Syst Evol Microbiol 59: 1727–1732. [CrossRef] [PubMed]
    [Google Scholar]
  34. Tamura K., Nei M., Kumar S..( 2004;). Prospects for inferring very large phylogenies by using the neighbor-joining method. . Proc Natl Acad Sci U S A 101: 11030–11035. [CrossRef] [PubMed]
    [Google Scholar]
  35. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S..( 2013;). mega6: molecular evolutionary genetics analysis version 6.0. . Mole Biol Evol 30: 2725–2729.[CrossRef]
    [Google Scholar]
  36. Tindall B. J..( 1990a;). A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. . System Appl Microbiol 13: 128–130. [CrossRef]
    [Google Scholar]
  37. Tindall B. J..( 1990b;). Lipid composition of Halobacterium lacusprofundi. . FEMS Microbiol Lett 66: 199–202. [CrossRef]
    [Google Scholar]
  38. Tindall B. J., Sikorski J., Smibert R. A., Krieg N. R..( 2007;). Phenotypic Characterization and the Principles of Comparative Systematics. Washington, DC:: ASM Press;.[CrossRef]
    [Google Scholar]
  39. Willems A., Collins M. D..( 1995;). Reclassification of Oribaculum catoniae (Moore and Moore 1994) as Porphyromonas catoniae comb. nov. and emendation of the genus Porphyromonas. . Int J Syst Bacteriol 45: 578–581. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000898
Loading
/content/journal/ijsem/10.1099/ijsem.0.000898
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error