1887

Abstract

A Gram-stain negative, aerobic, non-motile, short-rod-shaped bacterium, designated KBL-4-9, was isolated from the storage liquid in the stems of trees in Xinjiang, PR China. Strain KBL-4-9 grew at 4–45 °C (optimum 37 °C), 1–3 % (w/v) NaCl (optimum 1 %, w/v) and pH 5.5–9.5 (optimum pH 7.5). Phylogenetic analyses based on 16S rRNA gene sequences indicated that strain KBL-4-9 belonged to the genus and showed the highest 16S rRNA gene sequence similarity of 97.36 % to CL-AP6, followed by S3-3 (97.16 %), J64 (97.15 %) and C10-2 (96.47 %). Analysis of strain KBL-4-9 based on the three housekeeping genes, , and , further confirmed the phylogenetic assignment of the isolates. The DNA G+C content was 61.6 mol% ( = 2.19). DNA–DNA hybridization with CL-AP6, S3-3 and J64 revealed 49.3 % ( = 3.04), 41.2 % and 52.5 % ( = 4.45) relatedness, respectively. The major cellular fatty acids of strain KBL-4-9 were C, C, summed feature 8 (Cω7 and/or Cω6) and C cyclo. The major isoprenoid quinone was Q-9. The major polar lipids were phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol and phosphatidylcholine. On the basis of phenotypic, chemotaxonomic and phylogenetic properties, strain KBL-4-9 is considered to represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is KBL-4-9 ( = JCM 19138 = CCTCC AB 2013069 = NRRL B-59988).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000896
2016-03-01
2022-01-27
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/3/1419.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000896&mimeType=html&fmt=ahah

References

  1. Ait Tayeb L., Ageron E., Grimont F., Grimont P. A. D. 2005; Molecular phylogeny of the genus Pseudomonas based on rpoB sequences and application for the identification of isolates. Res Microbiol 156:763–773 [View Article][PubMed]
    [Google Scholar]
  2. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [View Article][PubMed]
    [Google Scholar]
  3. Anzai Y., Kim H., Park J. Y., Wakabayashi H., Oyaizu H. 2000; Phylogenetic affiliation of the pseudomonads based on 16S rRNA sequence. Int J Syst Evol Microbiol 50:1563–1589 [View Article][PubMed]
    [Google Scholar]
  4. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142 [View Article][PubMed]
    [Google Scholar]
  5. Felsenstein J. 1985; Confidence limits on phylogenies: an approachusing the bootstrap. Evolution 39:783–791 [View Article]
    [Google Scholar]
  6. Fitch W. M. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416 [View Article]
    [Google Scholar]
  7. Hwang C. Y., Zhang G. I., Kang S. H., Kim H. J., Cho B. C. 2009; Pseudomonas pelagia sp. nov., isolated from a culture of the Antarctic green alga Pyramimonas gelidicola . Int J Syst Evol Microbiol 59:3019–3024 [View Article][PubMed]
    [Google Scholar]
  8. Kersters K., Ludwig W., Vancanneyt M., De Vos P., Gillis M., Schleifer K. H. 1996; Recent changes in the classification of the pseudomonads: an overview. Syst Appl Microbiol 19:465–477 [View Article]
    [Google Scholar]
  9. Kim K. H., Roh S. W., Chang H. W., Nam Y. D., Yoon J. H., Jeon C. O., Oh H. M., Bae J. W. 2009; Pseudomonas sabulinigri sp. nov., isolated from black beach sand. Int J Syst Evol Microbiol 59:38–41 [View Article][PubMed]
    [Google Scholar]
  10. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H., other authors. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721 [View Article][PubMed]
    [Google Scholar]
  11. Kimura M. 1983 The Neutral Theory of Molecular Evolution Cambridge: Cambridge University Press; [View Article]
    [Google Scholar]
  12. King E. O., Ward M. K., Raney D. E. 1954; Two simple media for the demonstration of pyocyanin and fluorescin. J Lab Clin Med 44:301–307[PubMed]
    [Google Scholar]
  13. Komagata K., Suzuki K. 1987; Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19:161–207 [View Article]
    [Google Scholar]
  14. Lai Q., Shao Z. 2008; Pseudomonas xiamenensis sp. nov., a denitrifying bacterium isolated from activated sludge. Int J Syst Evol Microbiol 58:1911–1915 [View Article][PubMed]
    [Google Scholar]
  15. Liu M., Luo X., Zhang L., Dai J., Wang Y., Tang Y., Li J., Sun T., Fang C. 2009; Pseudomonas xinjiangensis sp. nov., a moderately thermotolerant bacterium isolated from desert sand. Int J Syst Evol Microbiol 59:1286–1289 [View Article][PubMed]
    [Google Scholar]
  16. Lucena T., Pascual J., Garay E., Arahal D. R., Macián M. C., Pujalte M. J. 2010; Haliea mediterranea sp. nov., a marine gammaproteobacterium. Int J Syst Evol Microbiol 60:1844–1848 [View Article][PubMed]
    [Google Scholar]
  17. Macián M. C., Arahal D. R., Garay E., Ludwig W., Schleifer K. H., Pujalte M. J. 2005; Thalassobacter stenotrophicus gen. nov., sp. nov., a novel marine α-proteobacterium isolated from Mediterranean sea water. Int J Syst Evol Microbiol 55:105–110 [View Article][PubMed]
    [Google Scholar]
  18. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 3:208–218 [View Article]
    [Google Scholar]
  19. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [View Article]
    [Google Scholar]
  20. Migula W. 1894; Über ein neues System der Bakterien. Arb Bakteriol Inst Karlsruhe 1:235–238 (in German)
    [Google Scholar]
  21. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H. 1984; An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241 [View Article]
    [Google Scholar]
  22. Mulet M., Lalucat J., García-Valdés E. 2010; DNA sequence-based analysis of the Pseudomonas species. Environ Microbiol 12:1513–1530[PubMed]
    [Google Scholar]
  23. Murray R. G. E., Doetsch R. N., Robinow C. F. 1994; Determinative and cytological light microscopy. In Methods for General and Molecular Bacteriology pp 21–41Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  24. Oyaizu H., Komagata K. 1983; Grouping of Pseudomonas species on the basis of cellular fatty acid composition and the quinone system with special reference to the existence of 3-hydroxy fatty acids. J Gen Appl Microbiol 29:17–40 [View Article]
    [Google Scholar]
  25. Palleroni N. J. 1984; Genus I. Pseudomonas Migula 1894. In Bergey's Manual of Systematic Bacteriology vol. 1 pp 141–199Edited by Krieg N. R., Holt J. G. Baltimore, MD: Williams & Wilkins;
    [Google Scholar]
  26. Palleroni N. J. 1992; Introduction to the family Pseudomonadaceae . In The Prokaryotes, 2nd edn. pp 3071–3085Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K.-H. New York: Springer;
    [Google Scholar]
  27. Palleroni N. J. 2005; Genus I. Pseudomonas Migula 1894. In Bergey's Manual of Systematic Bacteriology, 2nd edn. vol. 2 (The Proteobacteria), part B pp 323–379Edited by Brenner D. J., Krieg N. R., Staley James T., Garrity G. M. New York: Springer;
    [Google Scholar]
  28. Pascual J., Lucena T., Ruvira M. A., Giordano A., Gambacorta A., Garay E., Arahal D. R., Pujalte M. J., Macián M. C. 2012; Pseudomonas litoralis sp. nov., isolated from Mediterranean seawater. Int J Syst Evol Microbiol 62:438–444 [View Article][PubMed]
    [Google Scholar]
  29. Peix A., Ramírez-Bahena M. H., Velázquez E. 2009; Historical evolution and current status of the taxonomy of genus Pseudomonas . Infect Genet Evol 9:1132–1147 [View Article][PubMed]
    [Google Scholar]
  30. Rozahon M., Ismayil N., Hamood B., Erkin R., Abdurahman M., Mamtimin H., Abdukerim M., Lal R., Rahman E. 2014; Rhizobium populi sp. nov., an endophytic bacterium isolated from Populus euphratica . Int J Syst Evol Microbiol 64:3215–3221 [View Article]
    [Google Scholar]
  31. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  32. Sasser M. 1990 Identification of bacteria by gas chromatography of cellular fatty acids MIDI Technical Note 101 Newark, DE: MIDI Inc;
    [Google Scholar]
  33. Scheidle M., Dittrich B., Klinger J., Ikeda H., Klee D., Büchs J. 2011; Controlling pH in shake flasks using polymer-based controlled-release discs with pre-determined release kinetics. BMC Biotechnol 11:25 [View Article][PubMed]
    [Google Scholar]
  34. Sneath P. H. A., Stevens M., Sackin M. J. 1981; Numerical taxonomy of Pseudomonas based on published records of substrate utilization. Antonie van Leeuwenhoek 47:423–448 [View Article][PubMed]
    [Google Scholar]
  35. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. 2011; mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739 [View Article][PubMed]
    [Google Scholar]
  36. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  37. Tindall B. J. 1990; A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13:128–130 [View Article]
    [Google Scholar]
  38. Vancanneyt M., Segers P., Torck U., Hoste B., Bernardet J. F., Vandamme P., Kersters K. 1996; Reclassification of Flavobacterium odoraturn (Stutzer 1929) strains to a new genus, Myroides, as Myroides odoratus comb. nov. and Myroides odoratimimus sp. nov. Int J Syst Bacteriol 46:926–932 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000896
Loading
/content/journal/ijsem/10.1099/ijsem.0.000896
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error