1887

Abstract

A novel, strictly anaerobic, methanogenic archaeon, strain E03.2, was isolated from a full-scale biogas plant in Germany. Cells were non-motile sarcina-like cocci, occurring in aggregates. Strain E03.2 grew autotrophically on H plus CO, and additionally cells could utilize acetate, methanol, moni-, di- and trimethylamine as carbon and energy sources; however, growth or methanogenesis on formate was not observed. Yeast extract and vitamins stimulated growth but were not mandatory. The optimal growth temperature of strain E03.2 was approximately 45 °C; maximal growth rates were obtained at about pH 7.0 in the presence of approximately 6.8 mM NaCl. The DNA G+C content of strain E03.2 was 41.3 mol%. Phylogenetic analyses based on 16S rRNA gene and sequences placed strain E03.2 within the genus . Based on 16S rRNA gene sequence similarity strain E03.2 was related to seven different species of the genus , but most closely related to TM-1. Phenotypic, physiological and genomic characteristics indicated that strain E03.2 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is E03.2 ( = DSM 100822 = JCM 30921).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000894
2016-03-01
2020-09-25
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/3/1533.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000894&mimeType=html&fmt=ahah

References

  1. Auch A. F., von Jan M., Klenk H. P., Göker M.. 2010; Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci2:117–134 [CrossRef][PubMed]
    [Google Scholar]
  2. Balch W. E., Fox G. E., Magrum L. J., Woese C. R., Wolfe R. S.. 1979; Methanogens: reevaluation of a unique biological group. Microbiol Rev43:260–296[PubMed]
    [Google Scholar]
  3. Boone D. R., Whitman W. B., Rouviere P.. 1993; Diversity and taxonomy of methanogens. In Methanogenesis pp35–80Edited by Ferry J. G.. New York: Chapman & Hall; [CrossRef]
    [Google Scholar]
  4. Bryant M. P., Boone D. R.. 1987; Emended description of strain MST (DSM 800T), the type strain of Methanosarcina barkeri. Int J Syst Bacteriol37:169–170 [CrossRef]
    [Google Scholar]
  5. De Vrieze J., Hennebel T., Boon N., Verstraete W.. 2012; Methanosarcina: the rediscovered methanogen for heavy duty biomethanation. Bioresour Technol112:1–9 [CrossRef][PubMed]
    [Google Scholar]
  6. DeLong E. F.. 1992; Archaea in coastal marine environments. Proc Natl Acad Sci U S A89:5685–5689 [CrossRef][PubMed]
    [Google Scholar]
  7. Doddema H. J., Vogels G. D.. 1978; Improved identification of methanogenic bacteria by fluorescence microscopy. Appl Environ Microbiol36:752–754[PubMed]
    [Google Scholar]
  8. Elberson M. A., Sowers K. R.. 1997; Isolation of an aceticlastic strain of Methanosarcina siciliae from marine canyon sediments and emendation of the species description for Methanosarcina siciliae. Int J Syst Bacteriol47:1258–1261 [CrossRef][PubMed]
    [Google Scholar]
  9. Ganzert L., Schirmack J., Alawi M., Mangelsdorf K., Sand W., Hillebrand-Voiculescu A., Wagner D.. 2014; Methanosarcina spelaei sp. nov., a methanogenic archaeon isolated from a floating biofilm of a subsurface sulphurous lake. Int J Syst Evol Microbiol64:3478–3484 [CrossRef][PubMed]
    [Google Scholar]
  10. Illmer P., Reitschuler C., Wagner A. O., Schwarzenauer T., Lins P.. 2014; Microbial succession during thermophilic digestion: the potential of Methanosarcina sp. PLoS One9:e86967 [CrossRef][PubMed]
    [Google Scholar]
  11. Kampmann K., Ratering S., Geißler-Plaum R., Schmidt M., Zerr W., Schnell S.. 2014; Changes of the microbial population structure in an overloaded fed-batch biogas reactor digesting maize silage. Bioresour Technol174:108–117 [CrossRef][PubMed]
    [Google Scholar]
  12. Kern T., Linge M., Rother M.. 2015; Methanobacterium aggregans sp. nov., a hydrogenotrophic methanogenic archaeon isolated from an anaerobic digester. Int J Syst Evol Microbiol65:1975–1980 [CrossRef][PubMed]
    [Google Scholar]
  13. Kohler P. R., Metcalf W. W.. 2012; Genetic manipulation of Methanosarcina spp. Front Microbiol3:259 [CrossRef][PubMed]
    [Google Scholar]
  14. Lai M. C., Sowers K. R., Robertson D. E., Roberts M. F., Gunsalus R. P.. 1991; Distribution of compatible solutes in the halophilic methanogenic archaebacteria. J Bacteriol173:5352–5358[PubMed]
    [Google Scholar]
  15. Li X., Huang Y., Whitman W. B.. 2015; The relationship of the whole genome sequence identity to DNA hybridization varies between genera of prokaryotes. Antonie van Leeuwenhoek107:241–249 [CrossRef][PubMed]
    [Google Scholar]
  16. Luton P. E., Wayne J. M., Sharp R. J., Riley P. W.. 2002; The mcrA gene as an alternative to 16S rRNA in the phylogenetic analysis of methanogen populations in landfill. Microbiology148:3521–3530 [CrossRef][PubMed]
    [Google Scholar]
  17. Maestrojuán G. M., Boone D. R.. 1991; Characterization of Methanosarcina barkeri MST and 227, Methanosarcina mazei S-6T, and Methanosarcina vacuolata Z-761T. Int J Syst Bacteriol41:267–274 [CrossRef]
    [Google Scholar]
  18. Mah R. A.. 1980; Isolation and characterization of Methanococcus mazei. Curr Microbiol3:321–326 [CrossRef]
    [Google Scholar]
  19. Mah R. A., Kuhn D. A.. 1984; Transfer of the type species of the genus Methanococcus to the genus Methanosarcina, naming it Methanosarcina mazei (Barker 1936) comb. nov. et emend. and conservation of the genus Methanococcus (Approved Lists 1980) with Methanococcus vannielii (Approved Lists 1980) as the type species. Int J Syst Bacteriol34:263–265 [CrossRef]
    [Google Scholar]
  20. Mah R. A., Smith M. R., Baresi L.. 1978; Studies on an acetate-fermenting strain of Methanosarcina. Appl Environ Microbiol35:1174–1184[PubMed]
    [Google Scholar]
  21. Metcalf W. W., Zhang J. K., Shi X., Wolfe R. S.. 1996; Molecular, genetic, and biochemical characterization of the serC gene of Methanosarcina barkeri Fusaro. J Bacteriol178:5797–5802[PubMed]
    [Google Scholar]
  22. Müller V., Spanheimer R., Santos H.. 2005; Stress response by solute accumulation in archaea. Curr Opin Microbiol8:729–736 [CrossRef][PubMed]
    [Google Scholar]
  23. Murray P. A., Zinder S. H.. 1985; Nutritional requirements of Methanosarcina sp. strain TM-1.A. Appl Environ Microbiol50:49–55[PubMed]
    [Google Scholar]
  24. Nölling J., Elfner A., Palmer J. R., Steigerwald V. J., Pihl T. D., Lake J. A., Reeve J. N.. 1996; Phylogeny of Methanopyrus kandleri based on methyl coenzyme M reductase operons. Int J Syst Bacteriol46:1170–1173 [CrossRef][PubMed]
    [Google Scholar]
  25. Rother M.. 2010; Methanogenesis. In Handbook of Hydrocarbon and Lipid Microbiology pp481–499Edited by Timmis K. N.. Berlin, Heidelberg: Springer; [CrossRef]
    [Google Scholar]
  26. Shimizu S., Upadhye R., Ishijima Y., Naganuma T.. 2011; Methanosarcina horonobensis sp. nov., a methanogenic archaeon isolated from a deep subsurface Miocene formation. Int J Syst Evol Microbiol61:2503–2507 [CrossRef][PubMed]
    [Google Scholar]
  27. Shimizu S., Ueno A., Naganuma T., Kaneko K.. 2015; Methanosarcina subterranea sp. nov., a methanogenic archaeon isolated from a deep subsurface diatomaceous shale formation. Int J Syst Evol Microbiol65:1167–1171 [CrossRef][PubMed]
    [Google Scholar]
  28. Simankova M. V., Kotsyurbenko O. R., Lueders T., Nozhevnikova A. N., Wagner B., Conrad R., Friedrich M. W.. 2003; Isolation and characterization of new strains of methanogens from cold terrestrial habitats. Syst Appl Microbiol26:312–318 [CrossRef][PubMed]
    [Google Scholar]
  29. Sowers K. R., Gunsalus R. P.. 1988; Adaptation for growth at various saline concentrations by the archaebacterium Methanosarcina thermophila. J Bacteriol170:998–1002[PubMed]
    [Google Scholar]
  30. Sowers K. R., Baron S. F., Ferry J. G.. 1984; Methanosarcina acetivorans sp. nov., an acetotrophic methane-producing bacterium isolated from marine sediments. Appl Environ Microbiol47:971–978[PubMed]
    [Google Scholar]
  31. Sowers K. R., Boone J. E., Gunsalus R. P.. 1993; Disaggregation of Methanosarcina spp. and growth as single cells at elevated osmolarity. Appl Environ Microbiol59:3832–3839[PubMed]
    [Google Scholar]
  32. Thauer R. K., Kaster A. K., Seedorf H., Buckel W., Hedderich R.. 2008; Methanogenic archaea: ecologically relevant differences in energy conservation. Nat Rev Microbiol6:579–591 [CrossRef][PubMed]
    [Google Scholar]
  33. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J.. 1991; 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol173:697–703[PubMed]
    [Google Scholar]
  34. Whitman W. B., Bowen T. L., Boone D. R.. 2006; The methanogenic bacteria. In The Prokaryotes: a Handbook on the Biology of Bacteria, 3rd edn. pp165–207Edited by Dworkin M., Falkow S., Rosenberg E., Schleifer K.-H., Stackebrandt E.. New York: Springer;
    [Google Scholar]
  35. Yu D., Kurola J. M., Lähde K., Kymäläinen M., Sinkkonen A., Romantschuk M.. 2014; Biogas production and methanogenic archaeal community in mesophilic and thermophilic anaerobic co-digestion processes. J Environ Manage143:54–60 [CrossRef][PubMed]
    [Google Scholar]
  36. Zhilina T. N., Zavarzin G. A.. 1987; Methanosarcina vacuolata sp. nov., a vacuolated Methanosarcina. Int J Syst Bacteriol37:281–283 [CrossRef]
    [Google Scholar]
  37. Zinder S. H., Sowers K. R., Ferry J. G.. 1985; Methanosarcina thermophila sp. nov., a thermophilic acetotrophic methane-producing bacterium. Int J Syst Bacteriol35:522–523 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000894
Loading
/content/journal/ijsem/10.1099/ijsem.0.000894
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error