1887

Abstract

A novel, strictly anaerobic, methanogenic archaeon, strain E03.2, was isolated from a full-scale biogas plant in Germany. Cells were non-motile sarcina-like cocci, occurring in aggregates. Strain E03.2 grew autotrophically on H plus CO, and additionally cells could utilize acetate, methanol, moni-, di- and trimethylamine as carbon and energy sources; however, growth or methanogenesis on formate was not observed. Yeast extract and vitamins stimulated growth but were not mandatory. The optimal growth temperature of strain E03.2 was approximately 45 °C; maximal growth rates were obtained at about pH 7.0 in the presence of approximately 6.8 mM NaCl. The DNA G+C content of strain E03.2 was 41.3 mol%. Phylogenetic analyses based on 16S rRNA gene and sequences placed strain E03.2 within the genus . Based on 16S rRNA gene sequence similarity strain E03.2 was related to seven different species of the genus , but most closely related to TM-1. Phenotypic, physiological and genomic characteristics indicated that strain E03.2 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is E03.2 ( = DSM 100822 = JCM 30921).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000894
2016-03-01
2024-12-10
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/3/1533.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000894&mimeType=html&fmt=ahah

References

  1. Auch A. F., von Jan M., Klenk H. P., Göker M. 2010; Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2:117–134 [View Article][PubMed]
    [Google Scholar]
  2. Balch W. E., Fox G. E., Magrum L. J., Woese C. R., Wolfe R. S. 1979; Methanogens: reevaluation of a unique biological group. Microbiol Rev 43:260–296[PubMed]
    [Google Scholar]
  3. Boone D. R., Whitman W. B., Rouviere P. 1993; Diversity and taxonomy of methanogens. In Methanogenesis pp 35–80Edited by Ferry J. G. New York: Chapman & Hall; [View Article]
    [Google Scholar]
  4. Bryant M. P., Boone D. R. 1987; Emended description of strain MST (DSM 800T), the type strain of Methanosarcina barkeri . Int J Syst Bacteriol 37:169–170 [View Article]
    [Google Scholar]
  5. De Vrieze J., Hennebel T., Boon N., Verstraete W. 2012; Methanosarcina: the rediscovered methanogen for heavy duty biomethanation. Bioresour Technol 112:1–9 [View Article][PubMed]
    [Google Scholar]
  6. DeLong E. F. 1992; Archaea in coastal marine environments. Proc Natl Acad Sci U S A 89:5685–5689 [View Article][PubMed]
    [Google Scholar]
  7. Doddema H. J., Vogels G. D. 1978; Improved identification of methanogenic bacteria by fluorescence microscopy. Appl Environ Microbiol 36:752–754[PubMed]
    [Google Scholar]
  8. Elberson M. A., Sowers K. R. 1997; Isolation of an aceticlastic strain of Methanosarcina siciliae from marine canyon sediments and emendation of the species description for Methanosarcina siciliae . Int J Syst Bacteriol 47:1258–1261 [View Article][PubMed]
    [Google Scholar]
  9. Ganzert L., Schirmack J., Alawi M., Mangelsdorf K., Sand W., Hillebrand-Voiculescu A., Wagner D. 2014; Methanosarcina spelaei sp. nov., a methanogenic archaeon isolated from a floating biofilm of a subsurface sulphurous lake. Int J Syst Evol Microbiol 64:3478–3484 [View Article][PubMed]
    [Google Scholar]
  10. Illmer P., Reitschuler C., Wagner A. O., Schwarzenauer T., Lins P. 2014; Microbial succession during thermophilic digestion: the potential of Methanosarcina sp. PLoS One 9:e86967 [View Article][PubMed]
    [Google Scholar]
  11. Kampmann K., Ratering S., Geißler-Plaum R., Schmidt M., Zerr W., Schnell S. 2014; Changes of the microbial population structure in an overloaded fed-batch biogas reactor digesting maize silage. Bioresour Technol 174:108–117 [View Article][PubMed]
    [Google Scholar]
  12. Kern T., Linge M., Rother M. 2015; Methanobacterium aggregans sp. nov., a hydrogenotrophic methanogenic archaeon isolated from an anaerobic digester. Int J Syst Evol Microbiol 65:1975–1980 [View Article][PubMed]
    [Google Scholar]
  13. Kohler P. R., Metcalf W. W. 2012; Genetic manipulation of Methanosarcina spp. Front Microbiol 3:259 [View Article][PubMed]
    [Google Scholar]
  14. Lai M. C., Sowers K. R., Robertson D. E., Roberts M. F., Gunsalus R. P. 1991; Distribution of compatible solutes in the halophilic methanogenic archaebacteria. J Bacteriol 173:5352–5358[PubMed]
    [Google Scholar]
  15. Li X., Huang Y., Whitman W. B. 2015; The relationship of the whole genome sequence identity to DNA hybridization varies between genera of prokaryotes. Antonie van Leeuwenhoek 107:241–249 [View Article][PubMed]
    [Google Scholar]
  16. Luton P. E., Wayne J. M., Sharp R. J., Riley P. W. 2002; The mcrA gene as an alternative to 16S rRNA in the phylogenetic analysis of methanogen populations in landfill. Microbiology 148:3521–3530 [View Article][PubMed]
    [Google Scholar]
  17. Maestrojuán G. M., Boone D. R. 1991; Characterization of Methanosarcina barkeri MST and 227, Methanosarcina mazei S-6T, and Methanosarcina vacuolata Z-761T . Int J Syst Bacteriol 41:267–274 [View Article]
    [Google Scholar]
  18. Mah R. A. 1980; Isolation and characterization of Methanococcus mazei . Curr Microbiol 3:321–326 [View Article]
    [Google Scholar]
  19. Mah R. A., Kuhn D. A. 1984; Transfer of the type species of the genus Methanococcus to the genus Methanosarcina, naming it Methanosarcina mazei (Barker 1936) comb. nov. et emend. and conservation of the genus Methanococcus (Approved Lists 1980) with Methanococcus vannielii (Approved Lists 1980) as the type species. Int J Syst Bacteriol 34:263–265 [View Article]
    [Google Scholar]
  20. Mah R. A., Smith M. R., Baresi L. 1978; Studies on an acetate-fermenting strain of Methanosarcina . Appl Environ Microbiol 35:1174–1184[PubMed]
    [Google Scholar]
  21. Metcalf W. W., Zhang J. K., Shi X., Wolfe R. S. 1996; Molecular, genetic, and biochemical characterization of the serC gene of Methanosarcina barkeri Fusaro. J Bacteriol 178:5797–5802[PubMed]
    [Google Scholar]
  22. Müller V., Spanheimer R., Santos H. 2005; Stress response by solute accumulation in archaea. Curr Opin Microbiol 8:729–736 [View Article][PubMed]
    [Google Scholar]
  23. Murray P. A., Zinder S. H. 1985; Nutritional requirements of Methanosarcina sp. strain TM-1.A. Appl Environ Microbiol 50:49–55[PubMed]
    [Google Scholar]
  24. Nölling J., Elfner A., Palmer J. R., Steigerwald V. J., Pihl T. D., Lake J. A., Reeve J. N. 1996; Phylogeny of Methanopyrus kandleri based on methyl coenzyme M reductase operons. Int J Syst Bacteriol 46:1170–1173 [View Article][PubMed]
    [Google Scholar]
  25. Rother M. 2010; Methanogenesis. In Handbook of Hydrocarbon and Lipid Microbiology pp 481–499Edited by Timmis K. N. Berlin, Heidelberg: Springer; [View Article]
    [Google Scholar]
  26. Shimizu S., Upadhye R., Ishijima Y., Naganuma T. 2011; Methanosarcina horonobensis sp. nov., a methanogenic archaeon isolated from a deep subsurface Miocene formation. Int J Syst Evol Microbiol 61:2503–2507 [View Article][PubMed]
    [Google Scholar]
  27. Shimizu S., Ueno A., Naganuma T., Kaneko K. 2015; Methanosarcina subterranea sp. nov., a methanogenic archaeon isolated from a deep subsurface diatomaceous shale formation. Int J Syst Evol Microbiol 65:1167–1171 [View Article][PubMed]
    [Google Scholar]
  28. Simankova M. V., Kotsyurbenko O. R., Lueders T., Nozhevnikova A. N., Wagner B., Conrad R., Friedrich M. W. 2003; Isolation and characterization of new strains of methanogens from cold terrestrial habitats. Syst Appl Microbiol 26:312–318 [View Article][PubMed]
    [Google Scholar]
  29. Sowers K. R., Gunsalus R. P. 1988; Adaptation for growth at various saline concentrations by the archaebacterium Methanosarcina thermophila . J Bacteriol 170:998–1002[PubMed]
    [Google Scholar]
  30. Sowers K. R., Baron S. F., Ferry J. G. 1984; Methanosarcina acetivorans sp. nov., an acetotrophic methane-producing bacterium isolated from marine sediments. Appl Environ Microbiol 47:971–978[PubMed]
    [Google Scholar]
  31. Sowers K. R., Boone J. E., Gunsalus R. P. 1993; Disaggregation of Methanosarcina spp. and growth as single cells at elevated osmolarity. Appl Environ Microbiol 59:3832–3839[PubMed]
    [Google Scholar]
  32. Thauer R. K., Kaster A. K., Seedorf H., Buckel W., Hedderich R. 2008; Methanogenic archaea: ecologically relevant differences in energy conservation. Nat Rev Microbiol 6:579–591 [View Article][PubMed]
    [Google Scholar]
  33. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J. 1991; 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703[PubMed]
    [Google Scholar]
  34. Whitman W. B., Bowen T. L., Boone D. R. 2006; The methanogenic bacteria. In The Prokaryotes: a Handbook on the Biology of Bacteria, 3rd edn. pp 165–207Edited by Dworkin M., Falkow S., Rosenberg E., Schleifer K.-H., Stackebrandt E. New York: Springer;
    [Google Scholar]
  35. Yu D., Kurola J. M., Lähde K., Kymäläinen M., Sinkkonen A., Romantschuk M. 2014; Biogas production and methanogenic archaeal community in mesophilic and thermophilic anaerobic co-digestion processes. J Environ Manage 143:54–60 [View Article][PubMed]
    [Google Scholar]
  36. Zhilina T. N., Zavarzin G. A. 1987; Methanosarcina vacuolata sp. nov., a vacuolated Methanosarcina . Int J Syst Bacteriol 37:281–283 [View Article]
    [Google Scholar]
  37. Zinder S. H., Sowers K. R., Ferry J. G. 1985; Methanosarcina thermophila sp. nov., a thermophilic acetotrophic methane-producing bacterium. Int J Syst Bacteriol 35:522–523 [View Article]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.000894
Loading
/content/journal/ijsem/10.1099/ijsem.0.000894
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error