1887

Abstract

Strain 5GH22-11, which was isolated from greenhouse soil in the Yangpyeong region, Gyeonggi province, Republic of Korea, was characterized to be an aerobic, Gram-stain-negative, flagellated, rod-shaped bacterium. It could grow at temperatures from 10 to 33 °C (optimum of 28–30 °C), in the pH range of 6.0–10.0 (optimum of pH 7.0) and without NaCl. 16S rRNA gene sequence analysis showed that strain 5GH18-14 showed the highest sequence similarities with GH34-4 (98.6 %), GH19-3 (98.1 %), ‘’ THG-DN8.7 (97.9 %), THG-A13 (97.3 %), ‘’ THG-DN8.3 (97.2 %), ‘’ THG-DN8.2 (97.2 %) and YC6269 (97.2 %), revealing less than 95.5 % sequence similarities with all other species with validly published names. Phylogenetic trees also indicated that strain 5GH18-14 formed a compact subcluster with GH34-4, GH19-3, THG-A13 and YC6269 within the genus . The predominant quinone of strain 5GH18-14 was Q-8. The polar lipids were phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol and phosphatidylmonomethylethanolamine in large amounts, and moderate or small amounts of three unknown phospholipids and two unknown aminophospholipids. DNA–DNA hybridization values with closely related species were below 70 %. The DNA G+C content was 65.9 mol%. Based on the phylogenetic, physiological and chemotaxonomic data, it has been demonstrated that strain 5GH18-14 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is 5GH18-14 ( = KACC 16954 = JCM 30862).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000893
2016-03-01
2020-01-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/3/1401.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000893&mimeType=html&fmt=ahah

References

  1. Ahmed K., Chohnan S., Ohashi H., Hirata T., Masaki T., Sakiyama F.. 2003; Purification, bacteriolytic activity, and specificity of β-lytic protease from Lysobacter sp. IB-9374. J Biosci Bioeng95:27–34 [CrossRef][PubMed]
    [Google Scholar]
  2. Aslam Z., Yasir M., Jeon C. O., Chung Y. R.. 2009; Lysobacter oryzae sp. nov., isolated from the rhizosphere of rice (Oryza sativa L.). Int J Syst Evol Microbiol59:675–680 [CrossRef][PubMed]
    [Google Scholar]
  3. Choi J. H., Seok J. H., Cha J. H., Cha C. J.. 2014; Lysobacter panacisoli sp. nov., isolated from ginseng soil. Int J Syst Evol Microbiol64:2193–2197 [CrossRef][PubMed]
    [Google Scholar]
  4. Christensen P., Cook F. D.. 1978; Lysobacter, a new genus of nonfruiting, gliding bacteria with a high base ratio. Int J Syst Bacteriol28:367–393 [CrossRef]
    [Google Scholar]
  5. Du J., Singh H., Ngo H. T., Won K., Kim K. Y., Yi T. H.. 2015; Lysobacter tyrosinelyticus sp. nov. isolated from Gyeryongsan national park soil. J Microbiol53:365–370 [CrossRef][PubMed]
    [Google Scholar]
  6. Fautz E., Reichenbach H.. 1980; A simple test for flexirubin-type pigments. FEMS Microbiol Lett8:87–91 [CrossRef]
    [Google Scholar]
  7. Felsenstein J.. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  8. Fitch W. M.. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool20:406–416 [CrossRef]
    [Google Scholar]
  9. Gonzalez J. M., Saiz-Jimenez C.. 2002; A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. Environ Microbiol4:770–773 [CrossRef][PubMed]
    [Google Scholar]
  10. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H., other authors. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  11. Kimura M.. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  12. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar Buchner A., Lai T., Steppi S., other authors. 2004; arb: a software environment for sequence data. Nucleic Acids Res32:1363–1371 [CrossRef][PubMed]
    [Google Scholar]
  13. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H.. 1984; An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods2:233–241 [CrossRef]
    [Google Scholar]
  14. Nakayama T., Homma Y., Hashidoko Y., Mizutani J., Tahara S.. 1999; Possible role of xanthobaccins produced by Stenotrophomonas sp. strain SB-K88 in suppression of sugar beet damping-off disease. Appl Environ Microbiol65:4334–4339[PubMed]
    [Google Scholar]
  15. Ngo H. T. T., Won K., Du J., Son H. M., Park Y., Kook M., Kim K. Y., Jin F. X., Yi T. H.. 2015; Lysobacter terrae sp. nov. isolated from Aglaia odorata rhizosphere soil. Int J Syst Evol Microbiol65:587–592 [CrossRef][PubMed]
    [Google Scholar]
  16. Park J. H., Kim R., Aslam Z., Jeon C. O., Chung Y. R.. 2008; Lysobacter capsici sp. nov., with antimicrobial activity, isolated from the rhizosphere of pepper, and emended description of the genus Lysobacter. Int J Syst Evol Microbiol58:387–392 [CrossRef][PubMed]
    [Google Scholar]
  17. Saitou N., Nei M.. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol4:406–425[PubMed]
    [Google Scholar]
  18. Sasser M.. 1990; Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical Note 101 Newark, DE: MIDI Inc;
  19. Seldin L., Dubnau D.. 1985; Deoxyribonucleic acid homology among Bacillus polymyxa. Bacillus macerans, Bacillus azotofixans, and other nitrogen-fixing Bacillus strains. Int J Syst Bacteriol35:151–154 [CrossRef]
    [Google Scholar]
  20. Singh H., Du J., Ngo H. T., Won K., Yang J. E., Kim K. Y., Yi T. H.. 2015; Lysobacter fragariae sp. nov. and Lysobacter rhizosphaerae sp. nov. isolated from rhizosphere of strawberry plant. Antonie van Leeuwenhoek107:1437–1444 [CrossRef][PubMed]
    [Google Scholar]
  21. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S.. 2013; mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  22. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J.. 1991; 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol173:697–703[PubMed]
    [Google Scholar]
  23. Weon H. Y., Kim B. Y., Baek Y. K., Yoo S. H., Kwon S. W., Stackebrandt E., Go S. J.. 2006; Two novel species. Lysobacter daejeonensis sp. nov. and Lysobacter yangpyeongensis sp. nov., isolated from Korean greenhouse soils. Int J Syst Evol Microbiol56:947–951 [CrossRef][PubMed]
    [Google Scholar]
  24. Weon H. Y., Kim B. Y., Kim M. K., Yoo S. H., Kwon S. W., Go S. J., Stackebrandt E.. 2007; Lysobacter niabensis sp. nov. and Lysobacter niastensis sp. nov., isolated from greenhouse soils in Korea. Int J Syst Evol Microbiol57:548–551 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000893
Loading
/content/journal/ijsem/10.1099/ijsem.0.000893
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error