1887

Abstract

A novel heterotrophic, aerobic, Gram-stain-negative, rod-shaped and yellow bacterium, designated strain G18, was isolated from a water sample collected from the deep South China Sea. Strain G18 grew at 4–40 °C (optimum 28–32 °C), at pH 6.0–8.0 (optimum pH 6.5–7.5) and with 0–12 % (w/v) NaCl (optimum 3–4 %). The organism was mesophilic and piezotolerant, its optimal growth pressure was 0.1 MPa, which was lower than that at the depth from which it was isolated. Its optimal growth temperature was higher than that at the depth of its isolation. The predominant cellular fatty acids were Ciso, Ciso 3-OH and Ciso. The major polar lipids were composed of phosphatidylethanolamine, one unknown aminolipid and one unknown polar lipid. The major respiratory quinone was menaquinone 6. The G+C content of the genomic DNA was 35 mol%. Phylogenetic analysis, based on 16S rRNA gene sequences, revealed that strain G18 clustered with species of the genus with validly published names within the family with 95.9–98.2 % sequence similarity. DNA–DNA reassociation values ranged from 9 to 42 %. Differential phenotypic properties, together with the phylogenetic distinctiveness, suggest that strain G18 differs from species of the genus with validly published names. On the basis of the polyphasic evidence, strain G18 represents a novel species, isolated from deep-sea, of the genus for which the name sp. nov. is proposed. The type strain is G18 ( = CCTCC AB 2015204 = KCTC 42729).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000883
2016-03-01
2020-01-25
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/3/1352.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000883&mimeType=html&fmt=ahah

References

  1. Bernardet J. F., Segers P., Vancanneyt M., Berthe F., Kersters K., Vandamme P.. 1996; Cutting a Gordian knot: emended classification and description of the genus Flavobacterium, emended description of the family Flavobacteriaceae, and proposal of Flavobacterium hydatis nom. nov. (Basonym, Cytophaga aquatilis Strohl and Tait 1978). Int J Syst Bacteriol46:128–148 [CrossRef]
    [Google Scholar]
  2. Bernardet J. F., Nakagawa Y., Holmes B., Subcommittee on the taxonomy of Flavobacterium and Cytophaga-like bacteria of the International Committee on Systematics of Prokaryotes. 2002; Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol52:1049–1070[PubMed]
    [Google Scholar]
  3. Collins M. D., Jones D.. 1980; Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2,4-diaminobutyric acid. J Appl Bacteriol48:459–470 [CrossRef]
    [Google Scholar]
  4. Davey K. E., Kirby R. R., Turley C. M., Weightman A. J., Fry J. C.. 2001; Depth variation of bacterial extracellular enzyme activity and population diversity in the northeastern North Atlantic Ocean. Deep Sea Res Part II Top Stud Oceanogr48:1003–1017 [CrossRef]
    [Google Scholar]
  5. Fang J., Uhle M., Billmark K., Bartlett D. H., Kato C.. 2006; Fractionation of carbon isotopes in biosynthesis of fatty acids by a piezophilic bacterium Moritella japonica strain DSK1. Geochim Cosmochim Acta70:1753–1760 [CrossRef]
    [Google Scholar]
  6. Fang J., Zhang L., Bazylinski D. A.. 2010; Deep-sea piezosphere and piezophiles: geomicrobiology and biogeochemistry. Trends Microbiol18:413–422 [CrossRef][PubMed]
    [Google Scholar]
  7. Fitch W. M.. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool20:406–416 [CrossRef]
    [Google Scholar]
  8. Huss V. A., Festl H., Schleifer K. H.. 1983; Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol4:184–192 [CrossRef][PubMed]
    [Google Scholar]
  9. Jukes T. H., Cantor C. R.. 1969; Evolution of protein molecules. In Mammalian Protein Metabolismvol. 3 pp21–132Edited by Munro H. N.. New York: academic Press; [CrossRef]
    [Google Scholar]
  10. Kato C., Sato T., Horikoshi K.. 1995; Isolation and properties of barophilic and barotolerant bacteria from deep-sea mud samples. Biodivers Conserv4:1–9 [CrossRef]
    [Google Scholar]
  11. Kirchman D. L.. 2002; The ecology of Cytophaga-Flavobacteria in aquatic environments. FEMS Microbiol Ecol39:91–100[PubMed]
    [Google Scholar]
  12. Komagata K., Suzuki K. I.. 1987; Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol19:161–207 [CrossRef]
    [Google Scholar]
  13. Lane D. J.. 1991; 16S/23S rRNA sequencing. In Nucleic acid techniques in bacterial systematics pp115–175Edited by Stackebrandt E., Goodfellow M.. Chichester: Wiley;
    [Google Scholar]
  14. Marmur J., Doty P.. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol5:109–118 [CrossRef][PubMed]
    [Google Scholar]
  15. Miyazaki M., Nogi Y., Fujiwara Y., Kawato M., Kubokawa K., Horikoshi K.. 2008; Neptunomonas japonica sp. nov., an Osedax japonicus symbiont-like bacterium isolated from sediment adjacent to sperm whale carcasses off Kagoshima, Japan. Int J Syst Evol Microbiol58:866–871 [CrossRef][PubMed]
    [Google Scholar]
  16. Murray R. G. E., Doetsch R. N., Robinow C. F.. 1994; Determinative and cytological light microscopy. In Methods for general and molecular bacteriology pp21–41Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  17. Nedashkovskaya O. I., Suzuki M., Vysotskii M. V., Mikhailov V. V.. 2003; Reichenbachia agariperforans gen. nov., sp. nov., a novel marine bacterium in the phylum Cytophaga-Flavobacterium-Bacteroides. Int J Syst Evol Microbiol53:81–85 [CrossRef][PubMed]
    [Google Scholar]
  18. Nedashkovskaya O. I., Vancanneyt M., Dawyndt P., Engelbeen K., Vandemeulebroecke K., Cleenwerck I., Hoste B., Mergaert J., Tan T.-L., other authors. 2005; Reclassification of [Cytophaga] marinoflava Reichenbach 1989 as Leeuwenhoekiella marinoflava gen. nov., comb. nov. and description of Leeuwenhoekiella aequorea sp. nov. Int J Syst Evol Microbiol55:1033–1038 [CrossRef][PubMed]
    [Google Scholar]
  19. Nedashkovskaya O. I., Vancanneyt M., Kim S. B., Zhukova N. V., Han J. H., Mikhailov V. V.. 2009; Leeuwenhoekiella palythoae sp. nov., a new member of the family Flavobacteriaceae. Int J Syst Evol Microbiol59:3074–3077 [CrossRef][PubMed]
    [Google Scholar]
  20. Nedashkovskaya O. I., Kukhlevskiy A. D., Zhukova N. V., Kim S. B.. 2014; Flavimarina pacifica gen. nov., sp. nov., a new marine bacterium of the family Flavobacteriaceae, and emended descriptions of the genus Leeuwenhoekiella, Leeuwenhoekiella aequorea and Leeuwenhoekiella marinoflava. Antonie van Leeuwenhoek106:421–429 [CrossRef][PubMed]
    [Google Scholar]
  21. Pinhassi J., Bowman J. P., Nedashkovskaya O. I., Lekunberri I., Gomez-Consarnau L., Pedrós-Alió C.. 2006; Leeuwenhoekiella blandensis sp. nov., a genome-sequenced marine member of the family Flavobacteriaceae. Int J Syst Evol Microbiol56:1489–1493 [CrossRef][PubMed]
    [Google Scholar]
  22. Reichenbach H.. 1989; Genus I. Cytophaga Winogradsky 1929, 577.ALemend. In Bergey's Manual of Systematic Bacteriologyvol. 3 pp2015–2050Edited by Staley J. T., Bryant M. P., Pfenning N., Holt J. G.. Baltimore: Williams & Wilkins;
    [Google Scholar]
  23. Reichenbach H.. 1992; Validation of the Publication of New Names and New Combinations Previously Effectively Published Outside the IJSB, List no.41. Int J Syst Bacteriol42:327–328 [CrossRef]
    [Google Scholar]
  24. Saitou N., Nei M.. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol4:406–425[PubMed]
    [Google Scholar]
  25. Si O.-J., Kim S.-J., Jung M.-Y., Choi S.-B., Kim J.-G., Kim S.-G., Roh S. W., Lee S. H., Rhee S.-K.. 2015; Leeuwenhoekiella polynyae sp. nov., isolated from a polynya in western Antarctica. Int J Syst Evol Microbiol65:1694–1699 [CrossRef]
    [Google Scholar]
  26. Smibert R. M., Krieg N. R.. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology pp607–654Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  27. Stackebrandt E., Goebel B. M.. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol44:846–849 [CrossRef]
    [Google Scholar]
  28. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E., other authors. 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol37:463–464 [CrossRef]
    [Google Scholar]
  29. Zhang X. Y., Zhang Y. J., Yu Y., Li H. J., Gao Z. M., Chen X. L., Chen B., Zhang Y. Z.. 2010; Neptunomonas antarctica sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol60:1958–1961 [CrossRef][PubMed]
    [Google Scholar]
  30. Zhang Y. J., Zhang X. Y., Zhao H. L., Zhou M. Y., Li H. J., Gao Z. M., Chen X. L., Dang H. Y., Zhang Y. Z.. 2012; Idiomarina maris sp. nov., a marine bacterium isolated from sediment. Int J Syst Evol Microbiol62:370–375 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000883
Loading
/content/journal/ijsem/10.1099/ijsem.0.000883
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error