1887

Abstract

Two strains of Gram-stain-positive, aerobic, non-motile, irregular coccus-shaped bacteria, designated YIM 2617 and YIM 2617-2, were isolated from the root of . Phylogenetic analysis on the basis of 16S rRNA gene sequence comparison revealed that the two strains were closely related to YIM M13146 (98.1 and 98.0 % similarities, respectively) and formed a robust clade with in the neighbour-joining tree. Optimum growth of the strains was observed at 28–32 °C, at pH 7.0–8.0 and in the presence of 0–2 % (w/v) NaCl. The chemotaxonomic profiles of the strains comprised anteiso-C as the major cellular fatty acid, MK-9(H) as the predominant menaquinone, alanine, glycine, glutamic acid and -diaminopimelic acid as peptidoglycan components, and phosphatidylcholine and diphosphatidylglycerol as the major polar lipids. The G+C contents of the genomic DNA of strains YIM 2617 and YIM 2617-2 were 66.4 and 66.6 mol%, respectively. DNA–DNA hybridizations of the two strains with YIM M13146 gave mean relatedness values of 47.6 ± 2.0 and 43.2 ± 1.5 %, respectively, while the relatedness value between them was 92.1 ± 2.2 %. On the basis of the data recorded from the present study, strains YIM 2617 and YIM 2617-2 represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is YIM 2617 ( = KCTC 29482 = DSM 28728 = JCM 30097).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000880
2016-03-01
2020-09-25
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/3/1306.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000880&mimeType=html&fmt=ahah

References

  1. Buck J. D.. 1982; Nonstaining (KOH) method for determination of gram reactions of marine bacteria. Appl Environ Microbiol44:992–993[PubMed]
    [Google Scholar]
  2. Christensen H., Angen O., Mutters R., Olsen J. E., Bisgaard M.. 2000; DNA-DNA hybridization determined in micro-wells using covalent attachment of DNA. Int J Syst Evol Microbiol50:1095–1102 [CrossRef][PubMed]
    [Google Scholar]
  3. Collins M. D., Pirouz T., Goodfellow M., Minnikin D. E.. 1977; Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol100:221–230 [CrossRef][PubMed]
    [Google Scholar]
  4. Embley T. M., Wait R.. 1994; Structural lipids of eubacteria. In Chemical Methods in Prokaryotic Systematics pp121–161Edited by Goodfellow M., Donnell A. G. O.. Chichester: Wiley;
    [Google Scholar]
  5. Ezaki T., Hashimoto Y., Yabuuchi E.. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol39:224–229 [CrossRef]
    [Google Scholar]
  6. Felsenstein J.. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  7. Felsenstein J.. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution39:783–791 [CrossRef]
    [Google Scholar]
  8. Fitch W. M.. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool20:406–416 [CrossRef]
    [Google Scholar]
  9. Gordon R. E., Barnett D. A., Handerhan J. E., Pang C.H.-N.. 1974; Nocardia coeliaca, Nocardia autotrophica, and the nocardin strain. Int J Syst Bacteriol24:54–63 [CrossRef]
    [Google Scholar]
  10. Groth I., Rodríguez C., Schütze B., Schmitz P., Leistner E., Goodfellow M.. 2004; Five novel Kitasatospora species from soil: Kitasatospora arboriphila sp. nov., K. gansuensis sp. nov., K. nipponensis sp. nov., K. paranensis sp. nov. and K. terrestris sp. nov. Int J Syst Evol Microbiol54:2121–2129 [CrossRef][PubMed]
    [Google Scholar]
  11. Hallmann J., Quadt-Hallmann A., Mahaffee W. F., Kloepper J. W.. 1997; Bacterial endophytes in agricultural crops. Can J Microbiol43:895–914 [CrossRef]
    [Google Scholar]
  12. Hasegawa T., Takizawa M., Tanida S.. 1983; A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Microbiol29:319–322 [CrossRef]
    [Google Scholar]
  13. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H., other authors. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  14. Kimura M.. 1983; Neutral Theory of Molecular Evolution Cambridge: Cambridge University Press; [CrossRef]
    [Google Scholar]
  15. Leifson E.. 1960; Atlas of Bacterial Flagellation London: Academic Press; [CrossRef]
    [Google Scholar]
  16. Li W. J., Xu P., Schumann P., Zhang Y. Q., Pukall R., Xu L. H., Stackebrandt E., Jiang C. L.. 2007; Georgenia ruanii sp. nov., a novel actinobacterium isolated from forest soil in Yunnan (China), and emended description of the genus Georgenia . Int J Syst Evol Microbiol57:1424–1428[PubMed][CrossRef]
    [Google Scholar]
  17. Li J., Zhao G. Z., Chen H. H., Wang H. B., Qin S., Zhu W. Y., Xu L. H., Jiang C. L., Li W. J.. 2008; Antitumour and antimicrobial activities of endophytic streptomycetes from pharmaceutical plants in rainforest. Lett Appl Microbiol47:574–580 [CrossRef][PubMed]
    [Google Scholar]
  18. Mesbah M., Premachandran U., Whitman W. B.. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol39:159–167 [CrossRef]
    [Google Scholar]
  19. Misaghi I. J., Donndelinger C. R.. 1990; Endophytic bacteria in symptom-free cotton plants. Phytopathology80:808–811 [CrossRef]
    [Google Scholar]
  20. Saitou N., Nei M.. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol4:406–425[PubMed]
    [Google Scholar]
  21. Smibert R. M., Krieg N. R.. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology pp607–654Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  22. Stackebrandt E., Goebel B. M.. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol44:846–849 [CrossRef]
    [Google Scholar]
  23. Tamaoka J., Katayama-Fujimura Y., Kuraishi H.. 1983; Analysis of bacterial menaquinone mixtures by high performance liquid chromatography. J Appl Bacteriol54:31–36 [CrossRef]
    [Google Scholar]
  24. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. 2011; mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol28:2731–2739 [CrossRef][PubMed]
    [Google Scholar]
  25. Tang S. K., Wang Y., Chen Y., Lou K., Cao L. L., Xu L. H., Li W. J.. 2009; Zhihengliuella alba sp. nov., and emended description of the genus Zhihengliuella . Int J Syst Evol Microbiol59:2025–2032 [CrossRef][PubMed]
    [Google Scholar]
  26. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res25:4876–4882 [CrossRef][PubMed]
    [Google Scholar]
  27. Zhang D. F., Wang H. F., Xiong Z. J., Tian X. P., Liu L., Zhang X. M., Jiang Z., Zhang S., Li W. J.. 2014; Mariniluteicoccus flavus gen. nov., sp. nov., a new member of the family Propionibacteriaceae, isolated from a deep-sea sediment. Int J Syst Evol Microbiol64:1051–1056 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000880
Loading
/content/journal/ijsem/10.1099/ijsem.0.000880
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error