1887

Abstract

A novel, anaerobic bacterium, strain MO-SEDI, was isolated from a methanogenic microbial community, which was originally obtained from marine subsurface sediments collected from off the Shimokita Peninsula of Japan. Cells were Gram-stain-negative, non-motile, non-spore-forming rods, 0.4–1.4 μm long by 0.4–0.6 μm wide. The cells also formed long filaments of up to about 11 μm. The strain grew on amino acids (i.e. valine, leucine, isoleucine, methionine, glycine, phenylalanine, tryptophan, lysine and arginine), pyruvate and melezitose in the presence of yeast extract. Growth was observed at 4–37 °C (optimally at 30 °C), at pH 6.0 and 8.5 (optimally at 7.0–7.5) and in 0–60 g l NaCl (optimally 20 g NaCl l). The G+C content of the DNA was 32.0 mol%. The polar lipids of strain MO-SEDI were phosphatidylglycerol, phosphatidyl lipids and unknown lipids. The major cellular fatty acids (>10 % of the total) were C, Cω9 and C dimethyl aldehyde. Comparative sequence analysis of the 16S rRNA gene showed that strain MO-SEDI was affiliated with the genus within the phylum . It was related most closely to the type strain of (94 % sequence similarity). Based on the phenotypic and genetic characteristics, strain MO-SEDI is considered to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is MO-SEDI ( = JCM 17293 = DSM 24004).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000878
2016-03-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/3/1293.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000878&mimeType=html&fmt=ahah

References

  1. Acinas S. G., Marcelino L. A., Klepac-Ceraj V., Polz M. F.. ( 2004;). Divergence and redundancy of 16S rRNA sequences in genomes with multiple rrn operons. J Bacteriol 186: 2629–2635 [CrossRef] [PubMed].
    [Google Scholar]
  2. Amann R. I., Binder B. J., Olson R. J., Chisholm S. W., Devereux R., Stahl D. A.. ( 1990;). Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol 56: 1919–1925 [PubMed].
    [Google Scholar]
  3. Angly F. E., Dennis P. G., Skarshewski A., Vanwonterghem I., Hugenholtz P., Tyson G. W.. ( 2014;). CopyRighter: a rapid tool for improving the accuracy of microbial community profiles through lineage-specific gene copy number correction. Microbiome 2: 11 [CrossRef] [PubMed].
    [Google Scholar]
  4. Aoki M., Ehara M., Saito Y., Yoshioka H., Miyazaki M., Saito Y., Miyashita A., Kawakami S., Yamaguchi T., other authors. ( 2014;). A long-term cultivation of an anaerobic methane-oxidizing microbial community from deep-sea methane-seep sediment using a continuous-flow bioreactor. PLoS One 9: e105356 [CrossRef] [PubMed].
    [Google Scholar]
  5. Breitenstein A., Wiegel J., Haertig C., Weiss N., Andreesen J. R., Lechner U.. ( 2002;). Reclassification of Clostridium hydroxybenzoicum as Sedimentibacter hydroxybenzoicus gen. nov., comb. nov., and description of Sedimentibacter saalensis sp. nov. Int J Syst Evol Microbiol 52: 801–807 [PubMed].
    [Google Scholar]
  6. Cava F., Lam H., de Pedro M. A., Waldor M. K.. ( 2011;). Emerging knowledge of regulatory roles of d-amino acids in bacteria. Cell Mol Life Sci 68: 817–831 [CrossRef] [PubMed].
    [Google Scholar]
  7. Cunin R., Glansdorff N., Piérard A., Stalon V.. ( 1986;). Biosynthesis and metabolism of arginine in bacteria. Microbiol Rev 50: 314–352 [PubMed].
    [Google Scholar]
  8. Daims H., Brühl A., Amann R., Schleifer K.-H., Wagner M.. ( 1999;). The domain-specific probe EUB338 is insufficient for the detection of all Bacteria: development and evaluation of a more comprehensive probe set. Syst Appl Microbiol 22: 434–444 [CrossRef] [PubMed].
    [Google Scholar]
  9. DeLong E. F.. ( 1992;). Archaea in coastal marine environments. Proc Natl Acad Sci U S A 89: 5685–5689 [CrossRef] [PubMed].
    [Google Scholar]
  10. Engelen B., Imachi H.. ( 2014;). Cultivation of subseafloor prokaryotic life. . In Developments in Marine Geology. Earth and Life Processes Discovered from Subseafloor Environment – A Decade of Science Achieved by the Integrated Ocean Drilling Program (IODP) vol. 7, pp. 197–209. Edited by Stein R., Blackman D., Inagaki F., Larsen H.-C.. Amsterdam: Elsevier;.
    [Google Scholar]
  11. Fry J. C., Parkes R. J., Cragg B. A., Weightman A. J., Webster G.. ( 2008;). Prokaryotic biodiversity and activity in the deep subseafloor biosphere. FEMS Microbiol Ecol 66: 181–196 [CrossRef] [PubMed].
    [Google Scholar]
  12. Halebian S., Harris B., Finegold S. M., Rolfe R. D.. ( 1981;). Rapid method that aids in distinguishing Gram-positive from Gram-negative anaerobic bacteria. J Clin Microbiol 13: 444–448 [PubMed].
    [Google Scholar]
  13. Imachi H., Aoi K., Tasumi E., Saito Y., Yamanaka Y., Saito Y., Yamaguchi T., Tomaru H., Takeuchi R., other authors. ( 2011;). Cultivation of methanogenic community from subseafloor sediments using a continuous-flow bioreactor. ISME J 5: 1913–1925 [CrossRef] [PubMed].
    [Google Scholar]
  14. Inagaki F., Orphan V.. ( 2014;). Exploration of subseafloor life and the biosphere through IODP (2003–2013). . In Developments in Marine Geology. Earth and Life Processes Discovered from Subseafloor Environment – A Decade of Science Achieved by the Integrated Ocean Drilling Program (IODP) vol. 7, pp. 39–63. Edited by Stein R., Blackman D., Inagaki F., Larsen H. -C.. Amsterdam: Elsevier;.
    [Google Scholar]
  15. Jørgensen B. B., Boetius A.. ( 2007;). Feast and famine - microbial life in the deep-sea bed. Nat Rev Microbiol 5: 770–781 [CrossRef] [PubMed].
    [Google Scholar]
  16. Kotelnikova S., Macario A. J., Pedersen K.. ( 1998;). Methanobacterium subterraneum sp. nov., a new alkaliphilic, eurythermic and halotolerant methanogen isolated from deep granitic groundwater. Int J Syst Bacteriol 48: 357–367 [CrossRef] [PubMed].
    [Google Scholar]
  17. Lane D. J.. ( 1991;). 16S/23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by Stackebrandt E., Goodfellow M.. Chichester: Wiley;.
    [Google Scholar]
  18. Lever M. A.. ( 2013;). Functional gene surveys from ocean drilling expeditions - a review and perspective. FEMS Microbiol Ecol 84: 1–23 [CrossRef] [PubMed].
    [Google Scholar]
  19. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar, Buchner A., Lai T., Steppi S., other authors. ( 2004;). arb: a software environment for sequence data. Nucleic Acids Res 32: 1363–1371 [CrossRef] [PubMed].
    [Google Scholar]
  20. Miyashita A., Mochimaru H., Kazama H., Ohashi A., Yamaguchi T., Nunoura T., Horikoshi K., Takai K., Imachi H.. ( 2009;). Development of 16S rRNA gene-targeted primers for detection of archaeal anaerobic methanotrophs (ANMEs). FEMS Microbiol Lett 297: 31–37 [CrossRef] [PubMed].
    [Google Scholar]
  21. Miyazaki M., Sakai S., Ritalahti K. M., Saito Y., Yamanaka Y., Saito Y., Tame A., Uematsu K., Löffler F. E., other authors. ( 2014;). Sphaerochaeta multiformis sp. nov., an anaerobic, psychrophilic bacterium isolated from subseafloor sediment, and emended description of the genus Sphaerochaeta. Int J Syst Evol Microbiol 64: 4147–4154 [CrossRef] [PubMed].
    [Google Scholar]
  22. Murakami S., Fujishima K., Tomita M., Kanai A.. ( 2012;). Metatranscriptomic analysis of microbes in an oceanfront deep-subsurface hot spring reveals novel small RNAs and type-specific tRNA degradation. Appl Environ Microbiol 78: 1015–1022 [CrossRef] [PubMed].
    [Google Scholar]
  23. Parkes R. J., Cragg B., Roussel E., Webster G., Weightman A., Sass H.. ( 2014;). A review of prokaryotic populations and processes in sub-seafloor sediments, including biosphere: geosphere interactions. Mar Geol 352: 409–425 [CrossRef].
    [Google Scholar]
  24. Sass H., Parkes R. J.. ( 2011;). Sub-seafloor sediments: an extreme but globally significant prokaryotic habitat (taxonomy, diversity, ecology). . In Extremophiles Handbook, pp. 1015–1041. Edited by Horikoshi K.. Tokyo: [CrossRef] Springer;.
    [Google Scholar]
  25. Stoddard S. F., Smith B. J., Hein R., Roller B. R. K., Schmidt T. M.. ( 2015;). rrnDB: improved tools for interpreting rRNA gene abundance in bacteria and archaea and a new foundation for future development. Nucleic Acids Res 43: (D1), D593–D598 [CrossRef] [PubMed].
    [Google Scholar]
  26. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S.. ( 2013;). mega6: molecular evolutionary genetics analysis version 6.0.Mol Biol Evol 30: 2725–2729 [CrossRef] [PubMed].
    [Google Scholar]
  27. Zhang X., Mandelco L., Wiegel J.. ( 1994;). Clostridium hydroxybenzoicum sp. nov., an amino acid-utilizing, hydroxybenzoate-decarboxylating bacterium isolated from methanogenic freshwater pond sediment. Int J Syst Bacteriol 44: 214–222 [CrossRef] [PubMed].
    [Google Scholar]
  28. Zillig W., Holz I., Janekovic D., Klenk H. P., Imsel E., Trent J., Wunderl S., Forjaz V. H., Coutinho R., Ferreira T.. ( 1990;). Hyperthermus butylicus, a hyperthermophilic sulfur-reducing archaebacterium that ferments peptides. J Bacteriol 172: 3959–3965 [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000878
Loading
/content/journal/ijsem/10.1099/ijsem.0.000878
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error