1887

Abstract

A bacterial strain, designated shin9-1, was isolated from a water sample taken from a water convolvulus field in Taiwan and characterized using a polyphasic taxonomical approach. Cells of strain shin9-1 were aerobic, Gram-stain-negative, rod-shaped and surrounded by a thick capsule and formed cream-coloured colonies. Growth occurred at 10–45 °C (optimum, 30 °C), with 0–3.0 % NaCl (optimum, 0.5 %) and at pH 7.0–9.0 (optimum, pH 7.0). Strain shin9-1 did not form nodules on a legume plant, Macroptilium atropurpureum, and the nodulation genes nodA, nodC and the nitrogenase reductase gene nifH were not detected by PCR. Phylogenetic analyses based on 16S rRNA and three housekeeping gene sequences (recA, atpD and rpoB) showed that strain shin9-1 belonged to the genus Rhizobium. Strain shin9-1 had the highest level of 16S rRNA gene sequence similarity with respect to Rhizobium daejeonense L61 (97.6 %). The major fatty acid of strain shin9-1 was C18 : 1ω7c. The polar lipid profile consisted of phosphatidylethanolamine, phosphatidylglycerol, phosphatidylcholine, diphosphatidylglycerol, phosphatidylmonomethylethanolamine and several uncharacterized lipids. The DNA G+C content was 58.3 mol%. The DNA–DNA relatedness of strain shin9-1 with respect to recognized species of the genus Rhizobium was less than 70 %. Phenotypic characteristics of the novel strain also differed from those of the most closely related species of the genus Rhizobium. On the basis of the phylogenetic inference and phenotypic data, strain shin9-1 should be classified as a representative of a novel species, for which the name Rhizobium ipomoeae sp. nov. is proposed. The type strain is shin9-1 ( = LMG 27163 = KCTC 32148).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000875
2016-04-01
2019-10-16
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/4/1633.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000875&mimeType=html&fmt=ahah

References

  1. Anzai Y., Kudo Y., Oyaizu H.. ( 1997;). The phylogeny of the genera Chryseomonas, Flavimonas, and Pseudomonas supports synonymy of these three genera. Int J Syst Bacteriol 47: 249–251 [CrossRef] [PubMed].
    [Google Scholar]
  2. Beveridge T. J., Lawrence J. R., Murray R. G. E.. ( 2007;). Sampling and staining for light microscopy. . In Methods for General and Molecular Bacteriology, 3rd edn., pp. 19–33. Edited by Reddy C. A., Beveridge T. J., Breznak J. A., Marzluf G. A., Schmidt T. M., Snyder L. R.. Washington, DC: American Society for Microbiology;.
    [Google Scholar]
  3. Bowman J. P.. ( 2000;). Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. Int J Syst Evol Microbiol 50: 1861–1868 [CrossRef] [PubMed].
    [Google Scholar]
  4. Breznak J. A., Costilow R. N.. ( 2007;). Physicochemical factors in growth. . In Methods for General and Molecular Bacteriology, 3rd edn., pp. 309–329. Edited by Reddy C. A., Beveridge T. J., Breznak J. A., Marzluf G. A., Schmidt T. M., Snyder L. R.. Washington, DC: American Society for Microbiology;.
    [Google Scholar]
  5. Chen W. M., Laevens S., Lee T. M., Coenye T., De Vos P., Mergeay M., Vandamme P.. ( 2001;). Ralstonia taiwanensis sp. nov., isolated from root nodules of Mimosa species and sputum of a cystic fibrosis patient. Int J Syst Evol Microbiol 51: 1729–1735 [CrossRef] [PubMed].
    [Google Scholar]
  6. Chen W. M., de Faria S. M., Strâliotto R., Pitard R. M., Simões-Araùjo J. L., Chou J. H., Chou Y. J., Barrios E., Prescott A. R., other authors. ( 2005;). Proof that Burkholderia strains form effective symbioses with legumes: a study of novel Mimosa-nodulating strains from South America. Appl Environ Microbiol 71: 7461–7471 [CrossRef] [PubMed].
    [Google Scholar]
  7. Cole J. R., Wang Q., Cardenas E., Fish J., Chai B., Farris R. J., Kulam-Syed-Mohideen A. S., McGarrell D. M., Marsh T., other authors. ( 2009;). The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 37: (Database), D141–D145 [CrossRef] [PubMed].
    [Google Scholar]
  8. Embley T. M., Wait R.. ( 1994;). Structural lipids of eubacteria. . In Chemical Methods in Prokaryotic Systematics, pp. 121–161. Edited by Goodfellow M., O'Donnell A. G.. Chichester: Wiley;.
    [Google Scholar]
  9. Ezaki T., Hashimoto Y., Yabuuchi E.. ( 1989;). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39: 224–229 [CrossRef].
    [Google Scholar]
  10. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17: 368–376 [CrossRef] [PubMed].
    [Google Scholar]
  11. Felsenstein J.. ( 1993;). phylip (phylogeny inference package), version 3.5c. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle, USA..
  12. Frank B.. ( 1889;). Über die Pilzsymbiose der Leguminosen. Ber Dtsch Bot Ges 7: 332–346 (in German).
    [Google Scholar]
  13. Gibson A. H.. ( 1963;). Physical environment and symbiotic nitrogen fixation. I. The effect of root temperature on recently nodulated Trifolium subterraneum L. plants. Aust J Biol Sci 16: 28–42.
    [Google Scholar]
  14. Hall T. A.. ( 1999;). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41: 95–98.
    [Google Scholar]
  15. Hunter W. J., Kuykendall L. D., Manter D. K.. ( 2007;). Rhizobium selenireducens sp. nov.: a selenite-reducing α-Proteobacteria isolated from a bioreactor. Curr Microbiol 55: 455–460 [CrossRef] [PubMed].
    [Google Scholar]
  16. Kaur J., Verma M., Lal R.. ( 2011;). Rhizobium rosettiformans sp. nov., isolated from a hexachlorocyclohexane dump site, and reclassification of Blastobacter aggregatus Hirsch and Muller 1986 as Rhizobium aggregatum comb. nov. Int J Syst Evol Microbiol 61: 1218–1225 [CrossRef] [PubMed].
    [Google Scholar]
  17. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H., other authors. ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62: 716–721 [CrossRef] [PubMed].
    [Google Scholar]
  18. Kimura M.. ( 1983;). The Neutral Theory of Molecular Evolution Cambridge: Cambridge University Press; [CrossRef].
    [Google Scholar]
  19. Kluge A. G., Farris F. S.. ( 1969;). Quantitative phyletics and the evolution of anurans. Syst Zool 18: 1–32 [CrossRef].
    [Google Scholar]
  20. Kuykendall L. D.. ( 2005;). Family I. Rhizobiaceae. . In Bergey's Manual of Systematic Bacteriololgy, 2nd edn.vol. 2 Part C, pp. 324–361. Edited by Brenner D. J., Krieg N. R., Staley J. T., Garrity G. M...
    [Google Scholar]
  21. Laguerre G., Nour S. M., Macheret V., Sanjuan J., Drouin P., Amarger N.. ( 2001;). Classification of rhizobia based on nodC and nifH gene analysis reveals a close phylogenetic relationship among Phaseolus vulgaris symbionts. Microbiology 147: 981–993 [CrossRef] [PubMed].
    [Google Scholar]
  22. Mesbah M., Premachandran U., Whitman W. B.. ( 1989;). Precise measurement of the GC content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39: 159–167 [CrossRef].
    [Google Scholar]
  23. Mousavi S. A., Österman J., Wahlberg N., Nesme X., Lavire C., Vial L., Paulin L., de Lajudie P., Lindström K.. ( 2014;). Phylogeny of the Rhizobium-Allorhizobium-Agrobacterium clade supports the delineation of Neorhizobium gen. nov. Syst Appl Microbiol 37: 208–215 [CrossRef] [PubMed].
    [Google Scholar]
  24. Murray R. G. E., Doetsch R. N., Robinow C. F.. ( 1994;). Determinative and cytological light microscopy. . In Methods for General and Molecular Bacteriology, pp. 21–41. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R.. Washington, DC: American Society for Microbiology;.
    [Google Scholar]
  25. Nokhal T. H., Schlegel H. G.. ( 1983;). Taxonomic study of Paracoccus denitrificans. Int J Syst Bacteriol 33: 26–37 [CrossRef].
    [Google Scholar]
  26. Poly F., Monrozier L. J., Bally R.. ( 2001;). Improvement in the RFLP procedure for studying the diversity of nifH genes in communities of nitrogen fixers in soil. Res Microbiol 152: 95–103 [CrossRef] [PubMed].
    [Google Scholar]
  27. Powers E. M.. ( 1995;). Efficacy of the Ryu nonstaining KOH technique for rapidly determining gram reactions of food-borne and waterborne bacteria and yeasts. Appl Environ Microbiol 61: 3756–3758 [PubMed].
    [Google Scholar]
  28. Quan Z. X., Bae H. S., Baek J. H., Chen W. F., Im W. T., Lee S. T.. ( 2005;). Rhizobium daejeonense sp. nov. isolated from a cyanide treatment bioreactor. Int J Syst Evol Microbiol 55: 2543–2549 [CrossRef] [PubMed].
    [Google Scholar]
  29. Rozahon M., Ismayil N., Hamood B., Erkin R., Abdurahman M., Mamtimin H., Abdukerim M., Lal R., Rahman E.. ( 2014;). Rhizobium populi sp. nov., an endophytic bacterium isolated from Populus euphratica. Int J Syst Evol Microbiol 64: 3215–3221 [CrossRef] [PubMed].
    [Google Scholar]
  30. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425 [PubMed].
    [Google Scholar]
  31. Sasser M.. ( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids MIDI Technical Note 101 Newark, DE: MIDI Inc;.
    [Google Scholar]
  32. Schlegel H. G., Lafferty R., Krauss I.. ( 1970;). The isolation of mutants not accumulating poly-β-hydroxybutyric acid. Arch Mikrobiol 71: 283–294 [CrossRef] [PubMed].
    [Google Scholar]
  33. Spiekermann P., Rehm B. H. A., Kalscheuer R., Baumeister D., Steinbüchel A.. ( 1999;). A sensitive, viable-colony staining method using Nile red for direct screening of bacteria that accumulate polyhydroxyalkanoic acids and other lipid storage compounds. Arch Microbiol 171: 73–80 [CrossRef] [PubMed].
    [Google Scholar]
  34. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28: 2731–2739 [CrossRef] [PubMed].
    [Google Scholar]
  35. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25: 4876–4882 [CrossRef] [PubMed].
    [Google Scholar]
  36. Tighe S. W., de Lajudie P., Dipietro K., Lindström K., Nick G., Jarvis B. D.. ( 2000;). Analysis of cellular fatty acids and phenotypic relationships of Agrobacterium, Bradyrhizobium, Mesorhizobium, Rhizobium and Sinorhizobium species using the Sherlock Microbial Identification System. Int J Syst Evol Microbiol 50: 787–801 [CrossRef] [PubMed].
    [Google Scholar]
  37. Tindall B. J., Sikorski J., Smibert R. M., Krieg N. R., Reddy C. A., Beveridge T. J., Breznak J. A., Marzluf G. A., Schmidt T. M., Snyder L. R.. ( 2007;). Phenotypic characterization and the principles of comparative systematics. . In Methods for General and Molecular Bacteriology, 3rd edn., pp. 330–393. Edited by C. A. Reddy, T. J. Beveridge, J. A. Breznak, G. A. Marzluf, T. M. Schmidt & L. R. Snyder. Washington, DC: American Society for Microbiology;. [CrossRef]
    [Google Scholar]
  38. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E., other authors. ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches of bacterial systematics. Int J Syst Bacteriol 37: 463–464 [CrossRef].
    [Google Scholar]
  39. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J.. ( 1991;). 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173: 697–703 [PubMed].
    [Google Scholar]
  40. Wen C. M., Tseng C. S., Cheng C. Y., Li Y. K.. ( 2002;). Purification, characterization and cloning of a chitinase from Bacillus sp. NCTU2. Biotechnol Appl Biochem 35: 213–219 [CrossRef] [PubMed].
    [Google Scholar]
  41. Young J. M., Kuykendall L. D., Martínez-Romero E., Kerr A., Sawada H.. ( 2001;). A revision of Rhizobium Frank 1889, with an emended description of the genus, and the inclusion of all species of Agrobacterium Conn 1942 and Allorhizobium, undicola de Lajudie et al. 1998 as new combinations: Rhizobium radiobacter, R. rhizogenes, R. rubi, R. undicola and R. vitis. Int J Syst Evol Microbiol 51: 89–103 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000875
Loading
/content/journal/ijsem/10.1099/ijsem.0.000875
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error