1887

Abstract

A Gram-stain-negative, obligately aerobic, non-motile, non-sporulating, rod-shaped bacterium, designated TZCO2, was isolated from the soil of an irrigated coffee plantation in Arusha, Tanzania, East Africa. Phylogenetic analysis, based on 16S rRNA gene sequences, indicated that the isolate is affiliated with the genus in the family . Its closest relative is THG-DT86 (96.7 %). The pH and temperature ranges for growth were pH 6.0–8.5 (optimum 7.0–7.5) and 10–35 °C (optimum 30 °C, respectively. The predominant fatty acids were iso-C (32.4 %), iso-C G (22.6 %), iso-C (15.1 %) and iso-C 3-OH (10.0 %) The only isoprenoid quinone detected in strain TZCO2 was menaquinone-7 (MK-7); the major polar lipids were phosphoaminolipid, phosphatidylethanolamine, unidentified aminolipids and lipids. The DNA G+C content was 51.9 mol%. Physiological and chemotaxonomic data further confirmed that strain TZCO2 is distinct from other members of the genus . Thus, strain TZCO2 is considered to represent a novel species of the genus, for which the name sp. nov. is proposed. The type strain is TZCO2 ( = NCAIM B 02601 = CCM 8601).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000873
2016-04-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/4/1627.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000873&mimeType=html&fmt=ahah

References

  1. Barrow G. I., Feltham R. K. A. 1993 Cowan and Steel's Manual for the Identification of Medical Bacteria, 3rd edn.. Cambridge: Cambridge University Press; [View Article]
    [Google Scholar]
  2. Buck J. D. 1982; Nonstaining (KOH) method for determination of gram reactions of marine bacteria. Appl Environ Microbiol 44:992–993[PubMed]
    [Google Scholar]
  3. Cashion P., Holder-Franklin M. A., McCully J., Franklin M. 1977; A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81:461–466 [View Article][PubMed]
    [Google Scholar]
  4. Daood H. G., Biacs P. A. 2005; Simultaneous determination of Sudan dyes and carotenoids in red pepper and tomato products by HPLC. J Chromatogr Sci 43:461–465 [View Article][PubMed]
    [Google Scholar]
  5. Euzéby J. P. 1997; List of bacterial names with standing in nomenclature: a folder available on the Internet. Int J Syst Bacteriol 47:590–592 [View Article][PubMed]
    [Google Scholar]
  6. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376 [View Article][PubMed]
    [Google Scholar]
  7. Kämpfer P., Kroppenstedt R. M. 1996; Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42:989–1005 [View Article]
    [Google Scholar]
  8. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H., other authors. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721[PubMed] [CrossRef]
    [Google Scholar]
  9. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [View Article][PubMed]
    [Google Scholar]
  10. Kuykendall L. D., Roy M. A., O'Neill J. J., Devine T. E. 1988; Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradorhizobium japonicum . Int J Syst Bacteriol 38:358–361 [View Article]
    [Google Scholar]
  11. Lane D. J. 1991; 16S/23S rRNA sequencing. In Nucleic Acid Techniques in: Bacterial Systematics pp 115–175Edited by Stackebrandt E., Goodfellow M. New York: Wiley;
    [Google Scholar]
  12. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [View Article]
    [Google Scholar]
  13. Miller L. T. 1982; Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 16:584–586[PubMed]
    [Google Scholar]
  14. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  15. Singh H., Du J., Won K., Yang J.-E., Akter S., Kim K.-Y., Yin C., Yi T.-H. 2015; Taibaiella yonginensis sp. nov., a bacterium isolated from soil of Yongin city. Antonie van Leeuwenhoek 108:517–524 [View Article][PubMed]
    [Google Scholar]
  16. Son H. M., Kook M., Kim J. H., Yi T. H. 2014; Taibaiella koreensis sp. nov., isolated from soil of a ginseng field. Int J Syst Evol Microbiol 64:1018–1023 [View Article][PubMed]
    [Google Scholar]
  17. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849 [View Article]
    [Google Scholar]
  18. Szoboszlay S., Atzél B., Kukolya J., Tóth E. M., Márialigeti K., Schumann P., Kriszt B. 2008; Chryseobacterium hungaricum sp. nov., isolated from hydrocarbon-contaminated soil. Int J Syst Evol Microbiol 58:2748–2754[PubMed] [CrossRef]
    [Google Scholar]
  19. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [View Article]
    [Google Scholar]
  20. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. 2011; mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739 [View Article][PubMed]
    [Google Scholar]
  21. Tan X., Zhang R. G., Meng T. Y., Liang H. Z., Lv J. 2014; Taibaiella chishuiensis sp. nov., isolated from freshwater. Int J Syst Evol Microbiol 64:1795–1801 [View Article][PubMed]
    [Google Scholar]
  22. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  23. Tindall B. J. 1990a; A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13:128–130 [View Article]
    [Google Scholar]
  24. Tindall B. J. 1990b; Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 66:199–202 [View Article]
    [Google Scholar]
  25. Tindall B. J., Sikorski J., Smibert R. M., Kreig N. R. 2007; Phenotypic characterization and the principles of comparative systematics. In Methods for General and Molecular Microbiology pp 330–393Edited by Reddy C. A., Beveridge T. J., Breznak J. A., Marzluf G., Schmidt T. M., Snyder L. , 3rd edn. Washington DC: ASM Press; [View Article]
    [Google Scholar]
  26. Tindall B. J., Rosselló-Móra R., Busse H.-J., Ludwig W., Kämpfer P. 2010; Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 60:249–266 [View Article][PubMed]
    [Google Scholar]
  27. Venil C. K., Zakaria Z. A., Usha R., Ahmad W. A. 2014; Isolation and characterization of flexirubin type pigment from Chryseobacterium sp. UTM-3T . Biocat Agric Biotech 3:103–107
    [Google Scholar]
  28. Zhang L., Wang Y., Wei L., Wang Y., Shen X., Li S. 2013; Taibaiella smilacinae gen. nov., sp. nov., an endophytic member of the family Chitinophagaceae isolated from the stem of Smilacina japonica, and emended description of Flavihumibacter petaseus . Int J Syst Evol Microbiol 63:3769–3776[PubMed] [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000873
Loading
/content/journal/ijsem/10.1099/ijsem.0.000873
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error