1887

Abstract

In this study, the phylogenetic relationship and taxonomic status of six strains, representing different phenons and genomic groups of symbionts, originating from Poland, were established by comparative analysis of five concatenated housekeeping gene sequences (, , , and ), DNA–DNA hybridization and total DNA G+C content. Maximum-likelihood phylogenetic analysis of combined , , , and sequence data placed the studied bacteria into the clade comprising the genus . In the core gene phylograms, four nodule isolates (AG1, AG7, AG15 and AG27) formed a cluster common with , whereas the two other symbionts (AG17 and AG22) were grouped together with and . The species position of the studied bacteria was clarified by DNA–DNA hybridization. The DNA–DNA relatedness between isolates AG1, AG7, AG15 and AG27 and reference strain USDA 3383 was 76.4–84.2 %, and all these nodulators were defined as members of the genomospecies . DNA–DNA relatedness for isolates AG17 and AG22 and the reference strain ICMP 15022 was 77.5 and 80.1 %, respectively. We propose that the nodule isolates AG17 and AG22 belong to the genomic species . Additionally, it was found that the total DNA G+C content of the six test symbionts was 59.4–62.1 mol%, within the range for species of the genus .

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000862
2016-04-01
2020-01-26
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/4/1906.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000862&mimeType=html&fmt=ahah

References

  1. Berrada H., Fikri-Benbrahim K.. 2014; Taxonomy of the rhizobia: current perspectives. Br Microbiol Res J4:616–639 [CrossRef]
    [Google Scholar]
  2. Broughton W. J.. 2003; Roses by other names: taxonomy of the Rhizobiaceae . J Bacteriol185:2975–2979 [CrossRef][PubMed]
    [Google Scholar]
  3. Coenye T., Gevers D., Van de Peer Y., Vandamme P., Swings J.. 2005; Towards a prokaryotic genomic taxonomy. FEMS Microbiol Rev29:147–167 [CrossRef][PubMed]
    [Google Scholar]
  4. Eardly B. D., Wang F.-S., van Berkum P.. 1996; Corresponding 16S rRNA gene segments in Rhizobiaceae and Aeromonas yield discordant phylogenies. Plant Soil186:69–74 [CrossRef]
    [Google Scholar]
  5. Ezaki T., Hashimoto Y., Yabuuchi E.. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol39:224–229 [CrossRef]
    [Google Scholar]
  6. Gao J. L., Turner S. L., Kan F. L., Wang E. T., Tan Z. Y., Qiu Y. H., Gu J., Terefework Z., Young J. P. W., other authors. 2004; Mesorhizobium septentrionale sp. nov. and Mesorhizobium temperatum sp. nov., isolated from Astragalus adsurgens growing in the northern regions of China. Int J Syst Evol Microbiol54:2003–2012 [CrossRef][PubMed]
    [Google Scholar]
  7. Gaunt M. W., Turner S. L., Rigottier-Gois L., Lloyd-Macgilp S. A., Young J. P. W.. 2001; Phylogenies of atpD and recA support the small subunit rRNA-based classification of rhizobia. Int J Syst Evol Microbiol51:2037–2048 [CrossRef][PubMed]
    [Google Scholar]
  8. Gevers D., Coenye T.. 2007; Phylogenetic and genomic analysis. In Manual of Environmental Microbiology pp157–168Edited by Hurst C. J., Crawford R. L., Garland J. L., Lipson D. A., Mills A. L., Stetzenbach L. D.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  9. Gevers D., Cohan F. M., Lawrence J. G., Spratt B. G., Coenye T., Feil E. J., Stackebrandt E., Van de Peer Y., Vandamme P., other authors. 2005; Opinion: re-evaluating prokaryotic species. Nat Rev Microbiol3:733–739 [CrossRef][PubMed]
    [Google Scholar]
  10. Gevers D., Dawyndt P., Vandamme P., Willems A., Vancanneyt M., Swings J., De Vos P.. 2006; Stepping stones towards a new prokaryotic taxonomy. Philos Trans R Soc Lond B Biol Sci361:1911–1916 [CrossRef][PubMed]
    [Google Scholar]
  11. Gnat S., Wójcik M., Wdowiak-Wróbel S., Kalita M., Ptaszyńska A., Małek W.. 2014; Phenotypic characterization of Astragalus glycyphyllos symbionts and their phylogeny based on the 16S rDNA sequences and RFLP of 16S rRNA gene. Antonie van Leeuwenhoek105:1033–1048 [CrossRef][PubMed]
    [Google Scholar]
  12. Grimont P. A. D., Popoff M. Y., Grimont F., Coynault C., Lemelin M.. 1980; Reproducibility and correlation study of three deoxyribonucleic acid hybridization procedures. Curr Microbiol4:325–330 [CrossRef]
    [Google Scholar]
  13. Guindon S., Gascuel O.. 2003; A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol52:696–704 [CrossRef][PubMed]
    [Google Scholar]
  14. Hanage W. P., Fraser C., Spratt B. G.. 2006; Sequences, sequence clusters and bacterial species. Philos Trans R Soc Lond B Biol Sci361:1917–1927 [CrossRef][PubMed]
    [Google Scholar]
  15. Huss V. A., Festl H., Schleifer K. H.. 1983; Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol4:184–192 [CrossRef][PubMed]
    [Google Scholar]
  16. Janda J. M., Abbott S. L.. 2006; The Enterobacteria, 2nd edn. Washington, DC: Society for Microbiology; [CrossRef]
    [Google Scholar]
  17. Jarvis B. D. W., Van Berkum P., Chen W. X., Nour S. M., Fernandez M. P., Cleyet-Marel J. C., Gillis M.. 1997; Transfer of Rhizobium loti, Rhizobium huakuii, Rhizobium ciceri, Rhizobium mediterraneum, and Rhizobium tianshanense to Mesorhizobium gen. nov.. Int J Syst Bacteriol47:895–898 [CrossRef]
    [Google Scholar]
  18. Kalita M., Małek W., Kaznowski A.. 2004; Analysis of genetic relationship of Sarothamnus scoparius microsymbionts and Bradyrhizobium sp. by hybridization in microdilution wells. J Biosci Bioeng97:158–161 [CrossRef][PubMed]
    [Google Scholar]
  19. Konstantinidis K. T., Tiedje J. M.. 2005a; Genomic insights that advance the species definition for prokaryotes. Proc Natl Acad Sci U S A102:2567–2572 [CrossRef][PubMed]
    [Google Scholar]
  20. Konstantinidis K. T., Tiedje J. M.. 2005b; Towards a genome-based taxonomy for prokaryotes. J Bacteriol187:6258–6264 [CrossRef][PubMed]
    [Google Scholar]
  21. Maróti G., Kondorosi E.. 2014; Nitrogen-fixing rhizobium-legume symbiosis: are polyploidy and host peptide-governed symbiont differentiation general principles of endosymbiosis?. Front Microbiol5:326[PubMed]
    [Google Scholar]
  22. Martens M., Delaere M., Coopman R., De Vos P., Gillis M., Willems A.. 2007; Multilocus sequence analysis of Ensifer and related taxa. Int J Syst Evol Microbiol57:489–503 [CrossRef][PubMed]
    [Google Scholar]
  23. Martens M., Dawyndt P., Coopman R., Gillis M., De Vos P., Willems A.. 2008; Advantages of multilocus sequence analysis for taxonomic studies: a case study using 10 housekeeping genes in the genus Ensifer (including former Sinorhizobium). Int J Syst Evol Microbiol58:200–214 [CrossRef][PubMed]
    [Google Scholar]
  24. Merabet C., Martens M., Mahdhi M., Zakhia F., Sy A., Le Roux C., Domergue O., Coopman R., Bekki A., other authors. 2010; Multilocus sequence analysis of root nodule isolates from Lotus arabicus (Senegal), Lotus creticus, Argyrolobium uniflorum, Medicago sativa (Tunisia) and description of Ensifer numidicus sp. nov. and Ensifer garamanticus sp. nov.. Int J Syst Evol Microbiol60:664–674 [CrossRef][PubMed]
    [Google Scholar]
  25. Mesbah M., Premachandran U., Whitman W. B.. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol39:159–167 [CrossRef]
    [Google Scholar]
  26. Mierzwa B., Wdowiak-Wróbel S., Małek W.. 2010; Robinia pseudoacacia in Poland and Japan is nodulated by Mesorhizobium amorphae strains. Antonie van Leeuwenhoek97:351–361 [CrossRef][PubMed]
    [Google Scholar]
  27. Naser S. M., Thompson F. L., Hoste B., Gevers D., Dawyndt P., Vancanneyt M., Swings J.. 2005; Application of multilocus sequence analysis (MLSA) for rapid identification of Enterococcus species based on rpoA and pheS genes. Microbiology151:2141–2150 [CrossRef][PubMed]
    [Google Scholar]
  28. Nicholas K. B., Nicholas H. B. J.. 1997; GeneDoc Pittsburgh: Pittsburgh Supercomputing Center;
    [Google Scholar]
  29. Nørskov-Lauritsen N., Christensen H., Okkels H., Kilian M., Bruun B.. 2004; Delineation of the genus Actinobacillus by comparison of partial infB sequences. Int J Syst Evol Microbiol54:635–644 [CrossRef][PubMed]
    [Google Scholar]
  30. Nour S. M., Cleyet-Marel J.-C., Normand P., Fernandez M. P.. 1995; Genomic heterogeneity of strains nodulating chick-peas (Cicer arietinum L.) and description of Rhizobium mediterraneum sp. nov. Int J Syst Bacteriol45:640–648[CrossRef]
    [Google Scholar]
  31. Page R. D. M.. 1996; TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci12:357–358[PubMed]
    [Google Scholar]
  32. Pérez-Yépez J., Armas-Capote N., Velázquez E., Pérez-Galdona R., Rivas R., León-Barrios M.. 2014; Evaluation of seven housekeeping genes for multilocus sequence analysis of the genus Mesorhizobium: resolving the taxonomic affiliation of the Cicer canariense rhizobia. Syst Appl Microbiol37:553–559 [CrossRef][PubMed]
    [Google Scholar]
  33. Pitcher D. G., Saunders N. A., Owen R. J.. 1989; Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. Lett Appl Microbiol8:151–156 [CrossRef]
    [Google Scholar]
  34. Posada D., Crandall K. A.. 1998; modeltest: testing the model of DNA substitution. Bioinformatics14:817–818 [CrossRef][PubMed]
    [Google Scholar]
  35. Rajendhran J., Gunasekaran P.. 2011; Microbial phylogeny and diversity: small subunit ribosomal RNA sequence analysis and beyond. Microbiol Res166:99–110 [CrossRef][PubMed]
    [Google Scholar]
  36. Rincón-Rosales R., Lloret L., Ponce E., Martínez-Romero E.. 2009; Rhizobia with different symbiotic efficiencies nodulate Acaciella angustissima in Mexico, including Sinorhizobium chiapanecum sp. nov. which has common symbiotic genes with Sinorhizobium mexicanum . FEMS Microbiol Ecol67:103–117 [CrossRef][PubMed]
    [Google Scholar]
  37. Rivas R., García-Fraile P., Velázquez E.. 2009; Taxonomy of bacteria nodulating legumes. Microbiol Insights2:51–69
    [Google Scholar]
  38. Rosselló-Mora R., Amann R.. 2001; The species concept for prokaryotes. FEMS Microbiol Rev25:39–67 [CrossRef][PubMed]
    [Google Scholar]
  39. Rosselló-Mora R., Stackebrandt E.. 2006; DNA–DNA reassociation methods applied to microbial taxonomy and their critical evaluation. In Molecular Identification, Systematics, and Population Structure of Prokaryotes pp23–50Edited by Stackebrandt E.. Berlin & Heidelberg: Springer; [CrossRef]
    [Google Scholar]
  40. Soler L., Yáñez M. A., Chacon M. R., Aguilera-Arreola M. G., Catalán V., Figueras M. J., Martínez-Murcia A. J.. 2004; Phylogenetic analysis of the genus Aeromonas based on two housekeeping genes. Int J Syst Evol Microbiol54:1511–1519 [CrossRef][PubMed]
    [Google Scholar]
  41. Stackebrandt E., Ebers J.. 2006; Taxonomic parameters revisited: tarnished gold standards. Microbiol Today8:6–9
    [Google Scholar]
  42. Stackebrandt E., Liesack W.. 1993; Nucleic acids and classification. In Handbook of New Bacterial Systematics pp151–194Edited by Goodfellow M., O'Donnell A. G.. New York: Academic Press;
    [Google Scholar]
  43. Stackebrandt E., Frederiksen W., Garrity G. M., Grimont P. A. D., Kämpfer P., Maiden M. C. J., Nesme X., Rosselló-Mora R., Swings J., other authors. 2002; Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol52:1043–1047[PubMed]
    [Google Scholar]
  44. Stępkowski T., Czaplińska M., Miedzinska K., Moulin L.. 2003; The variable part of the dnaK gene as an alternative marker for phylogenetic studies of rhizobia and related alpha Proteobacteria . Syst Appl Microbiol26:483–494 [CrossRef][PubMed]
    [Google Scholar]
  45. Vincent J.. 1970; A Manual for the Practical Study of the Root Nodule Bacteria Oxford: Blackwell Science;
    [Google Scholar]
  46. Vinuesa P., Silva C., Lorite M. J., Izaguirre-Mayoral M. L., Bedmar E. J., Martínez-Romero E.. 2005; Molecular systematics of rhizobia based on maximum likelihood and Bayesian phylogenies inferred from rrs, atpD, recA, nifH sequences, and their use in the classification of Sesbania microsymbionts from Venezuelan wetlands. Syst Appl Microbiol28:702–716 [CrossRef][PubMed]
    [Google Scholar]
  47. Wang E. T., van Berkum P., Sui X. H., Beyene D., Chen W. X., Martínez-Romero E.. 1999; Diversity of rhizobia associated with Amorpha fruticosa isolated from Chinese soils and description of Mesorhizobium amorphae sp. nov. Int J Syst Bacteriol49:51–65 [CrossRef][PubMed]
    [Google Scholar]
  48. Willems A.. 2006; The taxonomy of rhizobia: an overview. Plant Soil287:3–14 [CrossRef]
    [Google Scholar]
  49. Yarza P., Yilmaz P., Pruesse E., Glöckner F. O., Ludwig W., Schleifer K. H., Whitman W. B., Euzéby J., Amann R., Rosselló-Móra R.. 2014; Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol12:635–645 [CrossRef][PubMed]
    [Google Scholar]
  50. Youseif S. H., Abd El-Megeed F. H., Ageez A., Cocking E. C., Saleh S. A.. 2014; Phylogenetic multilocus sequence analysis of native rhizobia nodulating faba bean (Vicia faba L.) in Egypt. Syst Appl Microbiol37:560–569 [CrossRef][PubMed]
    [Google Scholar]
  51. Zeigler D. R.. 2003; Gene sequences useful for predicting relatedness of whole genomes in bacteria. Int J Syst Evol Microbiol53:1893–1900 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000862
Loading
/content/journal/ijsem/10.1099/ijsem.0.000862
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error