1887

Abstract

The taxonomic status of the bacterium is described, and based on the evidence presented, transfer of this species to the genus as comb. nov. is proposed. This reclassification is supported by data generated from genomic comparisons of ATCC VR-331 ( = FSC845 = DSM 101678) to other near neighbours, including subsp. . The full-length 16S rRNA gene sequence of strain ATCC VR-331 had 98.5 % nucleotide identity to the cognate gene in , with the highest similarity to subspecies . Phylogenetic trees of full-length 16S rRNA gene, and sequences from species of the genera (class ) and (class ) indicated that ATCC VR-331 was most closely related to members of the genus and not . Local collinear blocks within the chromosome of strain ATCC VR-331 had considerable similarity with subsp. , but not with any strain. The genomes of strain ATCC VR-331 and subsp. Utah 112 ( = ATCC 15482) contained an average nucleotide identity mean of 88.72 % and median of 89.18 %. Importantly, the genome of strain ATCC VR-331 contained one Pathogenicity Island, similar to subsp. , as well as the -specific gene and -specific genes and (also referred to as ). In contrast to the obligate intracellular genus , strain ATCC VR-331 and facultative intracellular can replicate in specialized cell-free media. Collectively, these results demonstrate that should be reclassified in the genus as comb. nov. The type strain of comb. nov. is ATCC VR-331 ( = FSC845 = DSM 101678). An emended description of the family is also provided.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000855
2016-03-01
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/3/1200.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000855&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J.. ( 1990;). Basic local alignment search tool. J Mol Biol 215: 403–410 [CrossRef] [PubMed].
    [Google Scholar]
  2. Burgdorfer W., Brinton L. P., Hughes L. E.. ( 1973;). Isolation and characterization of symbiotes from the Rocky Mountain wood tick, Dermacentor andersoni. J Invertebr Pathol 22: 424–434 [CrossRef] [PubMed].
    [Google Scholar]
  3. Cowdry E. V.. ( 1925;). A group of micro-organisms transmitted hereditarily in ticks and apparently unassociated with disease. J Exp Med 41: 817–830 [CrossRef] [PubMed].
    [Google Scholar]
  4. Darling A. E., Mau B., Perna N. T.. ( 2010;). progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS One 5: e11147 [CrossRef] [PubMed].
    [Google Scholar]
  5. Dumler J. S., Barbet A. F., Bekker C. P., Dasch G. A., Palmer G. H., Ray S. C., Rikihisa Y., Rurangirwa F. R.. ( 2001;). Reorganization of genera in the families Rickettsiaceae and Anaplasmataceae in the order Rickettsiales: unification of some species of Ehrlichia with Anaplasma, Cowdria with Ehrlichia and Ehrlichia with Neorickettsia, descriptions of six new species combinations and designation of Ehrlichia equi and ‘HGE agent’ as subjective synonyms of Ehrlichia phagocytophila. Int J Syst Evol Microbiol 51: 2145–2165 [CrossRef] [PubMed].
    [Google Scholar]
  6. Forsman M., Sandström G., Sjöstedt A.. ( 1994;). Analysis of 16S ribosomal DNA sequences of Francisella strains and utilization for determination of the phylogeny of the genus and for identification of strains by PCR. Int J Syst Bacteriol 44: 38–46 [CrossRef] [PubMed].
    [Google Scholar]
  7. Hayes S. F., Burgdorfer W.. ( 1981;). Ultrastructural comparisons of Wolbachia-like symbionts of ticks (Acari: Ixodidae). . In Rickettsiae and Rickettsial Diseases, pp. 281–289. Edited by Burgdorfer W., Anacker R. L.. New York, NY: Academic Press;.
    [Google Scholar]
  8. Iwen P. C.. ( 2013;). Francisella tularensis. . In Veterinary Microbiology, 3rd edn, pp. 139–144. Edited by McVey D. S., Kennedy M., Chengappa M. M.. Hoboken, NJ: Wiley-Blackwell;.
    [Google Scholar]
  9. Kim M., Oh H. S., Park S. C., Chun J.. ( 2014;). Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 64: 346–351 [CrossRef] [PubMed].
    [Google Scholar]
  10. McWilliam H., Li W., Uludag M., Squizzato S., Park Y. M., Buso N., Cowley A. P., Lopez R.. ( 2013;). Analysis Tool Web Services from the EMBL-EBI. Nucleic Acids Res 41: (W1), W597–W600 [CrossRef] [PubMed].
    [Google Scholar]
  11. Munderloh U. G., Kurtti T. J.. ( 1989;). Formulation of medium for tick cell culture. Exp Appl Acarol 7: 219–229 [CrossRef] [PubMed].
    [Google Scholar]
  12. Niebylski M. L., Peacock M. G., Fischer E. R., Porcella S. F., Schwan T. G.. ( 1997;). Characterization of an endosymbiont infecting wood ticks, Dermacentor andersoni, as a member of the genus Francisella. Appl Environ Microbiol 63: 3933–3940 [PubMed].
    [Google Scholar]
  13. Noda H., Munderloh U. G., Kurtti T. J.. ( 1997;). Endosymbionts of ticks and their relationship to Wolbachia spp. and tick-borne pathogens of humans and animals. Appl Environ Microbiol 63: 3926–3932 [PubMed].
    [Google Scholar]
  14. O'Neill S. L., Giordano R., Colbert A. M., Karr T. L., Robertson H. M.. ( 1992;). 16S rRNA phylogenetic analysis of the bacterial endosymbionts associated with cytoplasmic incompatibility in insects. Proc Natl Acad Sci U S A 89: 2699–2702 [CrossRef] [PubMed].
    [Google Scholar]
  15. Petersen J. M., Mead P. S., Schriefer M. E.. ( 2009;). Francisella tularensis: an arthropod-borne pathogen. Vet Res 40: 7 [CrossRef] [PubMed].
    [Google Scholar]
  16. Rasgon J. L., Gamston C. E., Ren X.. ( 2006;). Survival of Wolbachia pipientis in cell-free medium. Appl Environ Microbiol 72: 6934–6937 [CrossRef] [PubMed].
    [Google Scholar]
  17. Rousset F., Bouchon D., Pintureau B., Juchault P., Solignac M.. ( 1992;). Wolbachia endosymbionts responsible for various alterations of sexuality in arthropods. Proc R Soc Lond B 250: 91–98 [CrossRef] [PubMed].
    [Google Scholar]
  18. Sjöstedt A.. ( 2007;). Tularemia: history, epidemiology, pathogen physiology, and clinical manifestations. Ann N Y Acad Sci 1105: 1–29 [CrossRef] [PubMed].
    [Google Scholar]
  19. Suitor E. C. Jr.. ( 1964;). The relationship of Wolbachia persica Suitor and Weiss to its host. J Insect Pathol 6: 111–124.
    [Google Scholar]
  20. Suitor E. C., Weiss E.. ( 1961;). Isolation of a rickettsialike microorganism (Wolbachia persica, n. sp.) from Argas persicus (Oken). J Infect Dis 108: 95–106 [CrossRef].
    [Google Scholar]
  21. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S.. ( 2013;). mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30: 2725–2729 [CrossRef] [PubMed].
    [Google Scholar]
  22. Weisburg W. G., Dobson M. E., Samuel J. E., Dasch G. A., Mallavia L. P., Baca O., Mandelco L., Sechrest J. E., Weiss E., Woese C. R.. ( 1989;). Phylogenetic diversity of the Rickettsiae. J Bacteriol 171: 4202–4206 [PubMed].
    [Google Scholar]
  23. Weiss E., Dasch G. A., Chang K.-P.. ( 1984;). Genus VII. Wolbachia. . In Bergey's Manual of Systematic Bacteriology, pp. 711–713. Edited by Krieg N. R., Holt J. G.. Baltimore, MD: Williams & Wilkins;.
    [Google Scholar]
  24. Yano Y., Takada N., Fujita H.. ( 1993;). Ultrastructure of spotted fever rickettsialike microorganisms observed in tissues of Dermacentor taiwanensis (Acari: Ixodidae). J Med Entomol 30: 579–585 [CrossRef] [PubMed].
    [Google Scholar]
  25. Zerbino D. R., Birney E.. ( 2008;). Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18: 821–829 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000855
Loading
/content/journal/ijsem/10.1099/ijsem.0.000855
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error