1887

Abstract

Analysis of the microbiota of raw cow's milk and semi-finished milk products yielded seven isolates assigned to the genus that formed two individual groups in a phylogenetic analysis based on partial and 16S rRNA gene sequences. The two groups could be differentiated from each other and also from their closest relatives as well as from the type species by phenotypic and chemotaxonomic characterization and average nucleotide identity (ANIb) values calculated from draft genome assemblies. ANIb values within the groups were higher than 97.3 %, whereas similarity values to the closest relatives were 85 % or less. The major cellular lipids of strains WS4917 and WS4993 were phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol; the major quinone was Q-9 in both strains, with small amounts of Q-8 in strain WS4917. The DNA G+C contents of strains WS4917 and WS4993 were 58.08 and 57.30 mol%, respectively. Based on these data, strains WS4917, WS4995 ( = DSM 29141 = LMG 28434), WS4999, WS5001 and WS5002 should be considered as representatives of a novel species of the genus , for which the name sp. nov. is proposed. The type strain of is strain WS4917 ( = DSM 29165 = LMG 28433). Strains WS4993 and WS4994 ( = DSM 29140 = LMG 28438) should be recognized as representing a second novel species of the genus , for which the name sp. nov. is proposed. The type strain of is strain WS4993 ( = DSM 29166 = LMG 28437).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000852
2016-03-01
2020-09-25
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/3/1163.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000852&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J.. 1990; Basic local alignment search tool. J Mol Biol215:403–410 [CrossRef][PubMed]
    [Google Scholar]
  2. Arslan S., Eyi A., Özdemir F.. 2011; Spoilage potentials and antimicrobial resistance of Pseudomonas spp. isolated from cheeses. J Dairy Sci94:5851–5856 [CrossRef][PubMed]
    [Google Scholar]
  3. Baur C., Krewinkel M., Kranz B., von Neubeck M., Wenning M., Scherer S., Stoeckel M., Hinrichs J., Stressler T., Fischer L.. 2015; Quantification of the proteolytic and lipolytic activity of microorganisms isolated from raw milk. Int Dairy J49:23–29 [CrossRef]
    [Google Scholar]
  4. Benson D. A., Cavanaugh M., Clark K., Karsch-Mizrachi I., Lipman D. J., Ostell J., Sayers E. W.. 2013; GenBank. Nucleic Acids Res41:(D1)D36–D42 [CrossRef][PubMed]
    [Google Scholar]
  5. Bligh E. G., Dyer W. J.. 1959; A rapid method of total lipid extraction and purification. Can J Biochem Physiol37:911–917 [CrossRef][PubMed]
    [Google Scholar]
  6. Carrión O., Miñana-Galbis D., Montes M. J., Mercadé E.. 2011; Pseudomonas deceptionensis sp. nov. a psychrotolerant bacterium from the Antarctic. Int J Syst Evol Microbiol61:2401–2405 [CrossRef][PubMed]
    [Google Scholar]
  7. Delorme S., Lemanceau P., Christen R., Corberand T., Meyer J.-M., Gardan L.. 2002; Pseudomonas lini sp. nov., a novel species from bulk and rhizospheric soils. Int J Syst Evol Microbiol52:513–523 [CrossRef][PubMed]
    [Google Scholar]
  8. Edgar R. C.. 2004; muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res32:1792–1797 [CrossRef][PubMed]
    [Google Scholar]
  9. Ercolini D., Russo F., Blaiotta G., Pepe O., Mauriello G., Villani F.. 2007; Simultaneous detection of Pseudomonas fragi, P. lundensis, and P. putida from meat by use of a multiplex PCR assay targeting the carA gene. Appl Environ Microbiol73:2354–2359 [CrossRef][PubMed]
    [Google Scholar]
  10. Euzéby J. P.. 1997; List of Bacterial Names with Standing in Nomenclature: a folder available on the Internet. Int J Syst Bacteriol47:590–592 [CrossRef][PubMed]
    [Google Scholar]
  11. Franzetti L., Scarpellini M.. 2007; Characterisation of Pseudomonas spp. isolated from foods. Ann Microbiol57:39–47 [CrossRef]
    [Google Scholar]
  12. Hall B. G.. 2013; Building phylogenetic trees from molecular data with mega. Mol Biol Evol30:1229–1235 [CrossRef][PubMed]
    [Google Scholar]
  13. Hantsis-Zacharov E., Halpern M.. 2007; Culturable psychrotrophic bacterial communities in raw milk and their proteolytic and lipolytic traits. Appl Environ Microbiol73:7162–7168 [CrossRef][PubMed]
    [Google Scholar]
  14. Kämpfer P., Glaeser S. P.. 2012; Prokaryotic taxonomy in the sequencing era – the polyphasic approach revisited. Environ Microbiol14:291–317 [CrossRef][PubMed]
    [Google Scholar]
  15. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H., other authors. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  16. King E. O., Ward M. K., Raney D. E.. 1954; Two simple media for the demonstration of pyocyanin and fluorescin. J Lab Clin Med44:301–307[PubMed]
    [Google Scholar]
  17. Koka R., Weimer B. C.. 2000; Isolation and characterization of a protease from Pseudomonas fluorescens RO98. J Appl Microbiol89:280–288 [CrossRef][PubMed]
    [Google Scholar]
  18. Kuykendall L. D., Roy M. A., O'Neill J. J., Devine T. E.. 1988; Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int J Syst Bacteriol38:358–361 [CrossRef]
    [Google Scholar]
  19. Marchand S., Heylen K., Messens W., Coudijzer K., De Vos P., Dewettinck K., Herman L., De Block J., Heyndrickx M.. 2009a; Seasonal influence on heat-resistant proteolytic capacity of Pseudomonas lundensis and Pseudomonas fragi, predominant milk spoilers isolated from Belgian raw milk samples. Environ Microbiol11:467–482 [CrossRef][PubMed]
    [Google Scholar]
  20. Marchand S., Vandriesche G., Coorevits A., Coudijzer K., De Jonghe V., Dewettinck K., De Vos P., Devreese B., Heyndrickx M., De Block J.. 2009b; Heterogeneity of heat-resistant proteases from milk Pseudomonas species. Int J Food Microbiol133:68–77 [CrossRef][PubMed]
    [Google Scholar]
  21. Martins M. L., Pinto C. L., Rocha R. B., de Araújo E. F., Vanetti M. C.. 2006; Genetic diversity of Gram-negative, proteolytic, psychrotrophic bacteria isolated from refrigerated raw milk. Int J Food Microbiol111:144–148 [CrossRef][PubMed]
    [Google Scholar]
  22. McCarthy C. N., Woods R. G., Beacham I. R.. 2004; Regulation of the aprX-lipA operon of Pseudomonas fluorescens B52: differential regulation of the proximal and distal genes, encoding protease and lipase, by ompR-envZ. FEMS Microbiol Lett241:243–248 [CrossRef][PubMed]
    [Google Scholar]
  23. Miller L. T.. 1982; Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol16:584–586[PubMed]
    [Google Scholar]
  24. Molin G., Ternström A., Ursing J.. 1986; Pseudomonas lundensis, a new bacterial species isolated from meat. Int J Syst Bacteriol36:339–342 [CrossRef]
    [Google Scholar]
  25. Moore E. B., Tindall B., Martins Dos Santos V. P., Pieper D., Ramos J.-L., Palleroni N.. 2006; Nonmedical: Pseudomonas. In The Prokaryotes, 3rd edn, vol. 6. pp646–703Edited by Dworkin M., Falkow S., Rosenberg E., Schleifer K.-H., Stackebrandt E.. New York: [CrossRef] Springer;
    [Google Scholar]
  26. Mulet M., Bennasar A., Lalucat J., García-Valdés E.. 2009; An rpoD-based PCR procedure for the identification of Pseudomonas species and for their detection in environmental samples. Mol Cell Probes23:140–147 [CrossRef][PubMed]
    [Google Scholar]
  27. Mulet M., Lalucat J., García-Valdés E.. 2010; DNA sequence-based analysis of the Pseudomonas species. Environ Microbiol12:1513–1530[PubMed]
    [Google Scholar]
  28. Parte A. C.. 2014; LPSN – list of prokaryotic names with standing in nomenclature. Nucleic Acids Res42:(D1)D613–D616 [CrossRef][PubMed]
    [Google Scholar]
  29. Powers E. M.. 1995; Efficacy of the Ryu nonstaining KOH technique for rapidly determining gram reactions of food-borne and waterborne bacteria and yeasts. Appl Environ Microbiol61:3756–3758[PubMed]
    [Google Scholar]
  30. Ramírez-Bahena M.-H., Cuesta M. J., Tejedor C., Igual J. M., Fernández-Pascual M., Peix Á.. 2015; Pseudomonas endophytica sp. nov., isolated from stem tissue of Solanum tuberosum L. in Spain. Int J Syst Evol Microbiol65:2110–2117 [CrossRef][PubMed]
    [Google Scholar]
  31. Richter M., Rosselló-Móra R.. 2009; Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A106:19126–19131 [CrossRef][PubMed]
    [Google Scholar]
  32. Rieser G., Scherer S., Wenning M.. 2013; Micrococcus cohnii sp. nov., isolated from the air in a medical practice. Int J Syst Evol Microbiol63:80–85 [CrossRef][PubMed]
    [Google Scholar]
  33. Ryu E.. 1940; A simple method of differentiation between Gram-positive and Gram-negative organisms without staining. Kitasato Arch Exp Med17:58–63
    [Google Scholar]
  34. Skerman V. B. D., McGowan V., Sneath P. H. A.. 1980; Approved Lists of Bacterial Names. Int J Syst Bacteriol30:225–420 [CrossRef]
    [Google Scholar]
  35. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. 2011; mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol28:2731–2739 [CrossRef][PubMed]
    [Google Scholar]
  36. Tatusova T., Ciufo S., Fedorov B., O'Neill K., Tolstoy I.. 2014; RefSeq microbial genomes database: new representation and annotation strategy. Nucleic Acids Res42:(D1)D553–D559 [CrossRef][PubMed]
    [Google Scholar]
  37. Tindall B. J.. 1990a; A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol13:128–130 [CrossRef]
    [Google Scholar]
  38. Tindall B. J.. 1990b; Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett66:199–202 [CrossRef]
    [Google Scholar]
  39. Tindall B. J., Sikorski J., Smibert R. M., Krieg N. R.. 2007; Phenotypic characterization and the principles of comparative systematics. In Methods for General and Molecular Microbiology pp330–393Edited by Reddy C. A., Beveridge T. J., Breznak J. A., Marzluf G., Schmidt T. M., Snyder L. R.. Washington, DC: [CrossRef] American Society for Microbiology;
    [Google Scholar]
  40. Tryfinopoulou P., Tsakalidou E., Nychas G.-J.E.. 2002; Characterization of Pseudomonas spp. associated with spoilage of gilt-head sea bream stored under various conditions. Appl Environ Microbiol68:65–72 [CrossRef][PubMed]
    [Google Scholar]
  41. von Neubeck M., Baur C., Krewinkel M., Stoeckel M., Kranz B., Stressler T., Fischer L., Hinrichs J., Scherer S., Wenning M.. 2015; Biodiversity of refrigerated raw milk microbiota and their enzymatic spoilage potential. Int J Food Microbiol211:57–65 [CrossRef][PubMed]
    [Google Scholar]
  42. Xu P., Li W. J., Tang S. K., Zhang Y. Q., Chen G. Z., Chen H. H., Xu L. H., Jiang C. L.. 2005; Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family ‘Oxalobacteraceae’ isolated from China. Int J Syst Evol Microbiol55:1149–1153 [CrossRef][PubMed]
    [Google Scholar]
  43. Yumoto I., Kusano T., Shingyo T., Nodasaka Y., Matsuyama H., Okuyama H.. 2001; Assignment of Pseudomonas sp. strain E-3 to Pseudomonas psychrophila sp. nov., a new facultatively psychrophilic bacterium. Extremophiles5:343–349 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000852
Loading
/content/journal/ijsem/10.1099/ijsem.0.000852
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error