1887

Abstract

Ninety-six yeast isolates associated with dung beetles ( Fabricius) were examined based on a culture-dependent method. A comparison of the colony morphology and PCR-fingerprints obtained by (GTG) microsatellite-primed PCR indicated that 84 of these isolates belonged to one group. Five strains (DD1-1, DD2-33, DD4-11, DD5-15 and DD6-1) were selected as the representatives of this main group, where each of the five selected strains had been derived from a different dung beetle collected in northern Thailand. A comparison of the D1/D2 domain sequence of the large subunit rRNA gene (LSU D1/D2) and the internal transcribed spacer (ITS) sequences revealed that these five strains were the same and were related to the genus Phylogenetic analysis based on the LSU D1/D2 plus ITS sequences placed this group within the clade, but it was clearly separated from any known species. In addition, physiological tests showed that this group had the unusual property of the inability to hydrolyse urea, which was distinctly different from the related taxon. Therefore a novel yeast species named sp. nov. (ex-type strain DD1-1 = TISTR 5946 = JCM 30786 = CBS 14168) is proposed. The MycoBank number is MB812098.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000850
2016-03-01
2021-10-16
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/3/1180.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000850&mimeType=html&fmt=ahah

References

  1. Abe F., Ohkusu M., Kawamoto S., Kubo T., Sone K., Hata K. 2010; Isolation of yeasts from palm tissue damaged by the red palm weevil and their possible effect on the weevil overwintering. Mycoscience 51:215–223 [View Article]
    [Google Scholar]
  2. Bandoni R. J., Oberwinkler F., Bandoni A.-A. 1991; On species of Filobasidium associated with yuccas. Syst Appl Microbiol 14:98–101 [View Article]
    [Google Scholar]
  3. Christensen W. B. 1946; Urea decomposition as a means of differentiating Proteus and Paracolon cultures from each other and from Salmonella and Shigella types. J Bacteriol 52:461–466[PubMed]
    [Google Scholar]
  4. Edgar R. C. 2004; muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797 [View Article][PubMed]
    [Google Scholar]
  5. Endoh R., Suzuki M., Benno Y., Futai K. 2008; Candida kashinagacola sp. nov. C. pseudovanderkliftii sp. nov. and C. vanderkliftii sp. nov., three new yeasts from ambrosia beetle-associated sources. Antonie van Leeuwenhoek 94:389–402 [View Article][PubMed]
    [Google Scholar]
  6. Endoh R., Suzuki M., Okada G., Takeuchi Y., Futai K. 2011; Fungus symbionts colonizing the galleries of the ambrosia beetle Platypus quercivorus . Microb Ecol 62:106–120 [View Article][PubMed]
    [Google Scholar]
  7. Estes A. M., Hearn D. J., Snell-Rood E. C., Feindler M., Feeser K., Abebe T., Dunning Hotopp J. C., Moczek A. P. 2013; Brood ball-mediated transmission of microbiome members in the dung beetle. Onthophagus ÿaurus (Coleoptera: Scarabaeidae). PloS One 8:e79061 [View Article][PubMed]
    [Google Scholar]
  8. Fell J. W., Boekhout T., Fonseca A., Scorzetti G., Statzell-Tallman A. 2000; Biodiversity and systematics of basidiomycetous yeasts as determined by large-subunit rDNA D1/D2 domain sequence analysis. Int J Syst Evol Microbiol 50:1351–1371 [View Article][PubMed]
    [Google Scholar]
  9. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [View Article]
    [Google Scholar]
  10. Foottit R. G., Adler P. H. editors 2009 Insect Biodiversity: Science and Society Oxford: [View Article] Wiley-Blackwell;
    [Google Scholar]
  11. Hall T. A. 1999; BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98
    [Google Scholar]
  12. Hanski I., Cambefort Y. editors 1991 Dung Beetle Ecology Princeton, NJ: [View Article] Princeton University Press;
    [Google Scholar]
  13. Hui F. L., Chen L., Chu X. Y., Niu Q. H., Ke T. 2013; Wickerhamomyces mori sp. nov., an anamorphic yeast species found in the guts of wood-boring insect larvae. Int J Syst Evol Microbiol 63:1174–1178 [View Article][PubMed]
    [Google Scholar]
  14. Kurtzman C. P., Robnett C. J. 2003; Phylogenetic relationships among yeasts of the ‘Saccharomyces complex’ determined from multigene sequence analyses. FEMS Yeast Res 3:417–432 [View Article][PubMed]
    [Google Scholar]
  15. Kurtzman C. P., Fell J. W., Boekhout T., Robert V. 2011; Methods for isolation, phenotypic characterization and maintenance of yeasts. In The Yeasts: a Taxonomic Study, 5th edn. vol. 1 pp 105–106Edited by Kurzman C. P., Fell J. W., Boekhout T. San Diego, CA: Elsevier;
    [Google Scholar]
  16. Lachance M.-A., Bowles J. M., Starmer W. T. 2003; Metschnikowia santaceciliae, Candida hawaiiana, and Candida kipukae, three new yeast species associated with insects of tropical morning glory. FEMS Yeast Res 3:97–103[PubMed]
    [Google Scholar]
  17. Middelhoven W. J., Scorzetti G., Fell J. W. 2000; Trichosporon veenhuisii sp. nov., an alkane-assimilating anamorphic basidiomycetous yeast. Int J Syst Evol Microbiol 50:381–387 [View Article][PubMed]
    [Google Scholar]
  18. Middelhoven W. J., Scorzetti G., Fell J. W. 2004; Systematics of the anamorphic basidiomycetous yeast genus Trichosporon Behrend with the description of five novel species: Trichosporon vadense, T. smithiae, T. dehoogii, T. scarabaeorum and T. gamsii . Int J Syst Evol Microbiol 54:975–986 [View Article][PubMed]
    [Google Scholar]
  19. Molnar O., Schatzmayr G., Fuchs E., Prillinger H. 2004; Trichosporon mycotoxinivorans sp. nov., a new yeast species useful in biological detoxification of various mycotoxins. Syst Appl Microbiol 27:661–671 [View Article][PubMed]
    [Google Scholar]
  20. Nakase T. 1971; New species of yeasts found in Japan. J Gen Appl Microbiol 17:409–419 [View Article]
    [Google Scholar]
  21. Nakase T., Jindamorakot S., Sugita T., Am-in S., Kawasaki H., Potacharoen W., Tanticharoen M. 2006; Trichosporon siamense sp. nov. isolated from insect frass in Thailand. Mycoscience 47:106–109 [View Article]
    [Google Scholar]
  22. Nei M., Kumar S. 2000 Molecular Evolution and Phylogenetics p 126 New York: Oxford University Press;
    [Google Scholar]
  23. Nichols E., Spector S., Louzada J., Larsen T., Amezquita S., Favila M. E. 2008; Ecological functions and ecosystem service provided by Scarabaeinae dung beetles. Biol Conserv 141:1461–1474 [View Article]
    [Google Scholar]
  24. Ren Y. C., Wang Y., Chen L., Ke T., Hui F. L. 2014; Wickerhamiella allomyrinae f.a. sp. nov., a yeast species isolated from the gut of the rhinoceros beetle Allomyrina dichotoma . Int J Syst Evol Microbiol 64:3856–3861 [View Article][PubMed]
    [Google Scholar]
  25. Starmer W. T., Lachance M.-A. 2011; Yeast ecology. In The Yeasts: a Taxonomic Study, 5th edn. vol. 1 pp 65–83Edited by Kurtzman C. P., Fell J. W., Boekhout T. San Diego, CA: [View Article] Elsevier;
    [Google Scholar]
  26. Stuart C. A., Van Stratum E., Rustigian R. 1945; Further studies on urease production by Proteus and related organisms. J Bacteriol 49:437–444[PubMed]
    [Google Scholar]
  27. Sugita T. 2011; Trichosporon Behrend (1890). In The Yeasts: a Taxonomic Study, 5th edn. vol. 3 pp 2015–2061Edited by Kurtzman C. P., Fell J. W., Boekhout T. San Diego, CA: Elsevier; [CrossRef]
    [Google Scholar]
  28. Sugita T., Nishikawa A., Shinoda T., Yoshida K., Ando M. 1995; A new species. Trichosporon domesticum, isolated from the house of a summer-type hypersensitivity pneumonitis patient in Japan. J Gen Appl Microbiol 41:429–436 [View Article]
    [Google Scholar]
  29. Suh S.-O., Blackwell M. 2005; The beetle gut as a habitat for new species of yeasts. In Insect-Fungal Associations: Ecology and Evolution pp 244–256Edited by Vega F. E., Blackwell M. New York: Oxford University Press;
    [Google Scholar]
  30. Suh S.-O., Houseknecht J. L., Gujjari P., Zhou J. J. 2013; Scheffersomyces parashehatae f.a. sp. nov., Scheffersomyces xylosifermentans f.a., sp. nov., Candida broadrunensis sp. nov. and Candida manassasensis sp. nov., novel yeasts associated with wood-ingesting insects, and their ecological and biofuel implications. Int J Syst Evol Microbiol 63:4330–4339 [View Article][PubMed]
    [Google Scholar]
  31. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. 2013; mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729 [View Article][PubMed]
    [Google Scholar]
  32. Urbina H., Frank R., Blackwell M. 2013; Scheffersomyces cryptocercus: a new xylose-fermenting yeast associated with the gut of wood roaches and new combinations in the Sugiyamaella yeast clade. Mycologia 105:650–660 [View Article][PubMed]
    [Google Scholar]
  33. Wang Q. M., Bai F. Y. 2004; Four new yeast species of the genus Sporobolomyces from plant leaves. FEMS Yeast Res 4:579–586 [View Article][PubMed]
    [Google Scholar]
  34. White T. J., Bruns T., Lee S., Taylor J. W. 1990; Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: a Guide to Methods and Applications pp 315–322Edited by Innis M. A., Gelfand D. H., Sninsky J. J., White T. J. New York: Academic Press;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000850
Loading
/content/journal/ijsem/10.1099/ijsem.0.000850
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error