1887

Abstract

Ninety-six yeast isolates associated with dung beetles ( Fabricius) were examined based on a culture-dependent method. A comparison of the colony morphology and PCR-fingerprints obtained by (GTG) microsatellite-primed PCR indicated that 84 of these isolates belonged to one group. Five strains (DD1-1, DD2-33, DD4-11, DD5-15 and DD6-1) were selected as the representatives of this main group, where each of the five selected strains had been derived from a different dung beetle collected in northern Thailand. A comparison of the D1/D2 domain sequence of the large subunit rRNA gene (LSU D1/D2) and the internal transcribed spacer (ITS) sequences revealed that these five strains were the same and were related to the genus Phylogenetic analysis based on the LSU D1/D2 plus ITS sequences placed this group within the clade, but it was clearly separated from any known species. In addition, physiological tests showed that this group had the unusual property of the inability to hydrolyse urea, which was distinctly different from the related taxon. Therefore a novel yeast species named sp. nov. (ex-type strain DD1-1 = TISTR 5946 = JCM 30786 = CBS 14168) is proposed. The MycoBank number is MB812098.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000850
2016-03-01
2020-01-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/3/1180.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000850&mimeType=html&fmt=ahah

References

  1. Abe F., Ohkusu M., Kawamoto S., Kubo T., Sone K., Hata K.. 2010; Isolation of yeasts from palm tissue damaged by the red palm weevil and their possible effect on the weevil overwintering. Mycoscience51:215–223 [CrossRef]
    [Google Scholar]
  2. Bandoni R. J., Oberwinkler F., Bandoni A.-A.. 1991; On species of Filobasidium associated with yuccas. Syst Appl Microbiol14:98–101 [CrossRef]
    [Google Scholar]
  3. Christensen W. B.. 1946; Urea decomposition as a means of differentiating Proteus and Paracolon cultures from each other and from Salmonella and Shigella types. J Bacteriol52:461–466[PubMed]
    [Google Scholar]
  4. Edgar R. C.. 2004; muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res32:1792–1797 [CrossRef][PubMed]
    [Google Scholar]
  5. Endoh R., Suzuki M., Benno Y., Futai K.. 2008; Candida kashinagacola sp. nov. C. pseudovanderkliftii sp. nov. and C. vanderkliftii sp. nov., three new yeasts from ambrosia beetle-associated sources. Antonie van Leeuwenhoek94:389–402 [CrossRef][PubMed]
    [Google Scholar]
  6. Endoh R., Suzuki M., Okada G., Takeuchi Y., Futai K.. 2011; Fungus symbionts colonizing the galleries of the ambrosia beetle Platypus quercivorus . Microb Ecol62:106–120 [CrossRef][PubMed]
    [Google Scholar]
  7. Estes A. M., Hearn D. J., Snell-Rood E. C., Feindler M., Feeser K., Abebe T., Dunning Hotopp J. C., Moczek A. P.. 2013; Brood ball-mediated transmission of microbiome members in the dung beetle. Onthophagus ÿaurus (Coleoptera: Scarabaeidae). PloS One8:e79061 [CrossRef][PubMed]
    [Google Scholar]
  8. Fell J. W., Boekhout T., Fonseca A., Scorzetti G., Statzell-Tallman A.. 2000; Biodiversity and systematics of basidiomycetous yeasts as determined by large-subunit rDNA D1/D2 domain sequence analysis. Int J Syst Evol Microbiol50:1351–1371 [CrossRef][PubMed]
    [Google Scholar]
  9. Felsenstein J.. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution39:783–791 [CrossRef]
    [Google Scholar]
  10. Foottit R. G., Adler P. H.. editors 2009; Insect Biodiversity: Science and Society Oxford: [CrossRef] Wiley-Blackwell;
    [Google Scholar]
  11. Hall T. A.. 1999; BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser41:95–98
    [Google Scholar]
  12. Hanski I., Cambefort Y.. editors 1991; Dung Beetle Ecology Princeton, NJ: [CrossRef] Princeton University Press;
    [Google Scholar]
  13. Hui F. L., Chen L., Chu X. Y., Niu Q. H., Ke T.. 2013; Wickerhamomyces mori sp. nov., an anamorphic yeast species found in the guts of wood-boring insect larvae. Int J Syst Evol Microbiol63:1174–1178 [CrossRef][PubMed]
    [Google Scholar]
  14. Kurtzman C. P., Robnett C. J.. 2003; Phylogenetic relationships among yeasts of the ‘Saccharomyces complex’ determined from multigene sequence analyses. FEMS Yeast Res3:417–432 [CrossRef][PubMed]
    [Google Scholar]
  15. Kurtzman C. P., Fell J. W., Boekhout T., Robert V.. 2011; Methods for isolation, phenotypic characterization and maintenance of yeasts. In The Yeasts: a Taxonomic Study, 5th edn.vol. 1 pp105–106Edited by Kurzman C. P., Fell J. W., Boekhout T.. San Diego, CA: Elsevier;
    [Google Scholar]
  16. Lachance M.-A., Bowles J. M., Starmer W. T.. 2003; Metschnikowia santaceciliae, Candida hawaiiana, and Candida kipukae, three new yeast species associated with insects of tropical morning glory. FEMS Yeast Res3:97–103[PubMed]
    [Google Scholar]
  17. Middelhoven W. J., Scorzetti G., Fell J. W.. 2000; Trichosporon veenhuisii sp. nov., an alkane-assimilating anamorphic basidiomycetous yeast. Int J Syst Evol Microbiol50:381–387 [CrossRef][PubMed]
    [Google Scholar]
  18. Middelhoven W. J., Scorzetti G., Fell J. W.. 2004; Systematics of the anamorphic basidiomycetous yeast genus Trichosporon Behrend with the description of five novel species: Trichosporon vadense, T. smithiae, T. dehoogii, T. scarabaeorum and T. gamsii . Int J Syst Evol Microbiol54:975–986 [CrossRef][PubMed]
    [Google Scholar]
  19. Molnar O., Schatzmayr G., Fuchs E., Prillinger H.. 2004; Trichosporon mycotoxinivorans sp. nov., a new yeast species useful in biological detoxification of various mycotoxins. Syst Appl Microbiol27:661–671 [CrossRef][PubMed]
    [Google Scholar]
  20. Nakase T.. 1971; New species of yeasts found in Japan. J Gen Appl Microbiol17:409–419 [CrossRef]
    [Google Scholar]
  21. Nakase T., Jindamorakot S., Sugita T., Am-in S., Kawasaki H., Potacharoen W., Tanticharoen M.. 2006; Trichosporon siamense sp. nov. isolated from insect frass in Thailand. Mycoscience47:106–109 [CrossRef]
    [Google Scholar]
  22. Nei M., Kumar S.. 2000; Molecular Evolution and Phylogenetics p126 New York: Oxford University Press;
    [Google Scholar]
  23. Nichols E., Spector S., Louzada J., Larsen T., Amezquita S., Favila M. E.. 2008; Ecological functions and ecosystem service provided by Scarabaeinae dung beetles. Biol Conserv141:1461–1474 [CrossRef]
    [Google Scholar]
  24. Ren Y. C., Wang Y., Chen L., Ke T., Hui F. L.. 2014; Wickerhamiella allomyrinae f.a. sp. nov., a yeast species isolated from the gut of the rhinoceros beetle Allomyrina dichotoma . Int J Syst Evol Microbiol64:3856–3861 [CrossRef][PubMed]
    [Google Scholar]
  25. Starmer W. T., Lachance M.-A.. 2011; Yeast ecology. In The Yeasts: a Taxonomic Study, 5th edn.vol. 1 pp65–83Edited by Kurtzman C. P., Fell J. W., Boekhout T.. San Diego, CA: [CrossRef] Elsevier;
    [Google Scholar]
  26. Stuart C. A., Van Stratum E., Rustigian R.. 1945; Further studies on urease production by Proteus and related organisms. J Bacteriol49:437–444[PubMed]
    [Google Scholar]
  27. Sugita T.. 2011; Trichosporon Behrend (1890). In The Yeasts: a Taxonomic Study, 5th edn.vol. 3 pp2015–2061Edited by Kurtzman C. P., Fell J. W., Boekhout T.. San Diego, CA: Elsevier;[CrossRef]
    [Google Scholar]
  28. Sugita T., Nishikawa A., Shinoda T., Yoshida K., Ando M.. 1995; A new species. Trichosporon domesticum, isolated from the house of a summer-type hypersensitivity pneumonitis patient in Japan. J Gen Appl Microbiol41:429–436 [CrossRef]
    [Google Scholar]
  29. Suh S.-O., Blackwell M.. 2005; The beetle gut as a habitat for new species of yeasts. In Insect-Fungal Associations: Ecology and Evolution pp244–256Edited by Vega F. E., Blackwell M.. New York: Oxford University Press;
    [Google Scholar]
  30. Suh S.-O., Houseknecht J. L., Gujjari P., Zhou J. J.. 2013; Scheffersomyces parashehatae f.a. sp. nov., Scheffersomyces xylosifermentans f.a., sp. nov., Candida broadrunensis sp. nov. and Candida manassasensis sp. nov., novel yeasts associated with wood-ingesting insects, and their ecological and biofuel implications. Int J Syst Evol Microbiol63:4330–4339 [CrossRef][PubMed]
    [Google Scholar]
  31. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S.. 2013; mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  32. Urbina H., Frank R., Blackwell M.. 2013; Scheffersomyces cryptocercus: a new xylose-fermenting yeast associated with the gut of wood roaches and new combinations in the Sugiyamaella yeast clade. Mycologia105:650–660 [CrossRef][PubMed]
    [Google Scholar]
  33. Wang Q. M., Bai F. Y.. 2004; Four new yeast species of the genus Sporobolomyces from plant leaves. FEMS Yeast Res4:579–586 [CrossRef][PubMed]
    [Google Scholar]
  34. White T. J., Bruns T., Lee S., Taylor J. W.. 1990; Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: a Guide to Methods and Applications pp315–322Edited by Innis M. A., Gelfand D. H., Sninsky J. J., White T. J. New York: Academic Press;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000850
Loading
/content/journal/ijsem/10.1099/ijsem.0.000850
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error