sp. nov., isolated from forest soil Free

Abstract

Strain NHI-13, a Gram-stain-negative, aerobic and short rod-shaped bacterium, was isolated from forest soil at Kyonggi University in Suwon, South Korea. It grew optimally in R2A medium, at 20–30 °C, in the presence of 0–4 % NaCl. Colonies resulting from incubation of the strain on agar plates for 2 days were circular, raised, translucent, viscous and whitish-yellow, with entire margins. This strain exhibited high catalase activity but was negative for oxidase. 16S rRNA gene sequence analysis showed that strain NHI-13 formed a coherent cluster with members of the genus . Its similarities were 98.0 % with DSM 4731, 97.9 % with LMG 2350, 97.6 % with ATCC 15262, 97.5 % with GTC 1043, 97.1 % with ‘’ MJ15, 97.1 % with V4.BO.10 and 97.0 % with FWC40. The major cellular fatty acids were summed feature 8 (Cω7/Cω6), C and 11-methyl Cω7. The DNA G+C content was 63 mol%. The predominant quinone was ubiquinone Q-10. The polar lipid profile contained 1,2-di--acyl-3--α--glycopyranuronosyl glycerol, 1,2-di--acyl-3--α--glycopyranosyl glycerol, 1,2-di--acyl-3--[-glycopyranosyl (1 → 4)-α--glucopyranuronosyl] glycerols, phosphatidylglycerol, 1,2-diacyl-3- O-(6′-phosphatidyl-α--glucopyranosyl) glycerol and other unknown lipids. The DNA relatedness of strain NHI-13 with its reference strains was in the range of 43–56 %. On the basis of its phenotypic, genotypic, chemotaxonomic and phylogenetic distinctiveness, strain NHI-13 is suggested to be a representative of a novel species, belonging to the genus . Therefore, the name sp. nov. is proposed, with the type strain being NHI-13 ( = KEME 9005-016 = KACC 18249 = JCM 30385).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000848
2016-03-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/3/1144.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000848&mimeType=html&fmt=ahah

References

  1. Abraham W. R., Strömpl C., Meyer H., Lindholst S., Moore E. R., Christ R., Vancanneyt M., Tindall B. J., Bennasar A., other authors. 1999; Phylogeny and polyphasic taxonomy of Caulobacter species. Proposal of Maricaulis gen. nov. with Maricaulis maris (Poindexter) comb. nov. as the type species, and emended description of the genera Brevundimonas and Caulobacter . Int J Syst Bacteriol 49:1053–1073 [View Article][PubMed]
    [Google Scholar]
  2. Abraham W. R., Macedo A. J., Lünsdorf H., Fischer R., Pawelczyk S., Smit J., Vancanneyt M. 2008; Phylogeny by a polyphasic approach of the order Caulobacterales, proposal of Caulobacter mirabilis sp. nov., Phenylobacterium haematophilum sp. nov. and Phenylobacterium conjunctum sp. nov., and emendation of the genus Phenylobacterium . Int J Syst Evol Microbiol 58:1939–1949 [View Article][PubMed]
    [Google Scholar]
  3. Anast N., Smit J. 1988; Isolation and characterization of marine caulobacters and assessment of their potential for genetic experimentation. Appl Environ Microbiol 54:809–817[PubMed]
    [Google Scholar]
  4. Breznak J. A., Costilow R. N. 1994; Physicochemical factors in growth. In Methods for General and Molecular Bacteriology pp 137–154Edited by Gerhardt P., Murray R., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  5. Büsing K. H., Doll W., Freytag K. 1953; Die Bakterienflora der medizinischen Blutegel. Arch Mikrobiol 19:52–86 [View Article][PubMed]
    [Google Scholar]
  6. Dartnell L. R., Hunter S. J., Lovell K. V., Coates A. J., Ward J. M. 2010; Low-temperature ionizing radiation resistance of Deinococcus radiodurans and Antarctic Dry Valley bacteria. Astrobiology 10:717–732 [View Article][PubMed]
    [Google Scholar]
  7. Doetsch R. N. 1981; Determinative methods of light microscopy. In Manual of Methods for General Bacteriology pp 21–33Edited by Gerhardt P., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. B. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  8. Estrela A. B., Abraham W. R. 2010; Brevundimonas vancanneytii sp. nov., isolated from blood of a patient with endocarditis. Int J Syst Evol Microbiol 60:2129–2134 [View Article][PubMed]
    [Google Scholar]
  9. Felsenstein J. 1985; Confidence limit on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [View Article]
    [Google Scholar]
  10. Frank J. A., Reich C. I., Sharma S., Weisbaum J. S., Wilson B. A., Olsen G. J. 2008; Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Appl Environ Microbiol 74:2461–2470 [View Article][PubMed]
    [Google Scholar]
  11. Hiraishi A., Ueda Y., Ishihara J., Mori T. 1996; Comparative lipoquinone analysis of influent sewage and activated sludge by high-performance liquid chromatography and photodiode array detection. J Gen Appl Microbiol 42:457–469 [View Article]
    [Google Scholar]
  12. Jeong S. J., Jeong J., Kim J. 2015; Simple surface foam application enhances bioremediation of oil-contaminated soil in cold conditions. J Hazard Mat 286:164–170 [CrossRef]
    [Google Scholar]
  13. Kempf M. J., Chen F., Kern R., Venkateswaran K. 2005; Recurrent isolation of hydrogen peroxide-resistant spores of Bacillus pumilus from a spacecraft assembly facility. Astrobiology 5:391–405 [View Article][PubMed]
    [Google Scholar]
  14. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H., other authors. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721 [View Article][PubMed]
    [Google Scholar]
  15. Komagata K., Suzuki K. 1987; Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19:161–207 [View Article]
    [Google Scholar]
  16. Leifson E., Hugh R. 1954; A new type of polar monotrichous flagellation. J Gen Microbiol 10:68–70 [View Article][PubMed]
    [Google Scholar]
  17. MacRae J. D., Smit J. 1991; Characterization of caulobacters isolated from wastewater treatment systems. Appl Environ Microbiol 57:751–758[PubMed]
    [Google Scholar]
  18. Madigan M. T., Martinko J. M., Stahl D. A., Clark D. P. 2010 Brock Biology of Microorganisms, 13th edn. San Francisco: Benjamin Cummings;
    [Google Scholar]
  19. Mehlen A., Goeldner M., Ried S., Stindl S., Ludwig W., Schleifer K. H. 2004; Development of a fast DNA-DNA hybridization method based on melting profiles in microplates. Syst Appl Microbiol 27:689–695 [View Article][PubMed]
    [Google Scholar]
  20. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [View Article]
    [Google Scholar]
  21. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H. 1984; An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241 [View Article]
    [Google Scholar]
  22. Nei M., Kumar S. 2000 Molecular Evolution and Phylogenetics New York: Oxford University Press;
    [Google Scholar]
  23. Nokhal T. H., Schlegel H. G. 1983; Taxonomic study of Paracoccus denitrijicans . Int J Syst Bacteriol 33:26–37 [View Article]
    [Google Scholar]
  24. Parte A. C. 2014; LPSN—list of prokaryotic names with standing in nomenclature. Nucleic Acids Res 42:(D1)D613–D616 [View Article][PubMed]
    [Google Scholar]
  25. Poindexter J. S. 1981; The caulobacters: ubiquitous unusual bacteria. Microbiol Rev 45:123–179[PubMed]
    [Google Scholar]
  26. Poindexter J. S. 1999; Dimorphic prosthecate bacteria: the genera Caulobacter, Asticcacaulis, Hyphomicrobium, Pedomicrobium, Hyphomonas, and Thiodendron . In The Prokaryotes, 3rd edn. pp 2176–2196Edited by Dworkin M., Falkow S., Rosenberg E., Schleifer K. H., Stackebrandt E. New York: Springer;
    [Google Scholar]
  27. Rautela G. S., Cowling E. B. 1966; Simple cultural test for relative cellulolytic activity of fungi. Appl Microbiol 14:892–898[PubMed]
    [Google Scholar]
  28. Sasser M. 1990 Identification of bacteria by gas chromatography of cellular fatty acids MIDI Technical Note 101 Newark, DE: MIDI Inc;
    [Google Scholar]
  29. Segers P., Vancanneyt M., Pot B., Torck U., Hoste B., Dewettinck D., Falsen E., Kersters K., De Vos P. 1994; Classification of Pseudomonas diminuta Leifson and Hugh 1954 and Pseudomonas vesicularis Büsing, Döll, and Freytag 1953 in Brevundimonas gen. nov. as Brevundimonas diminuta comb. nov. and Brevundimonas vesicularis comb. nov., respectively. Int J Syst Bacteriol 44:499–510 [View Article][PubMed]
    [Google Scholar]
  30. Smibert R. M., Krieg N. R. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology pp 607–654Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  31. Staley J. T., Konopka A. E., Dalmasso J. P. 1987; Spatial and temporal distribution of Caulobacter spp. in two mesotrophic lakes. FEMS Microbiol Ecol 45:1–6 [View Article]
    [Google Scholar]
  32. Swan A. 1954; The use of a bile-aesculin medium and of Maxted's technique of Lancefield grouping in the identification of enterococci (group D streptococci). J Clin Pathol 7:160–163 [View Article][PubMed]
    [Google Scholar]
  33. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. 2013; mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729 [View Article][PubMed]
    [Google Scholar]
  34. Tsubouchi T., Shimane Y., Usui K., Shimamura S., Mori K., Hiraki T., Tame A., Uematsu K., Maruyama T., Hatada Y. 2013; Brevundimonas abyssalis sp. nov., a dimorphic prosthecate bacterium isolated from deep-subsea floor sediment. Int J Syst Evol Microbiol 63:1987–1994 [View Article][PubMed]
    [Google Scholar]
  35. Tsubouchi T., Koyama S., Mori K., Shimane Y., Usui K., Tokuda M., Tame A., Uematsu K., Maruyama T., Hatada Y. 2014; Brevundimonas denitrificans sp. nov., a denitrifying bacterium isolated from deep subseafloor sediment. Int J Syst Evol Microbiol 64:3709–3716 [View Article][PubMed]
    [Google Scholar]
  36. Van Pham H. T., Kim J. 2014; Bacillus thaonhiensis sp. nov., a new species, was isolated from the forest soil of Kyonggi University by using a modified culture method. Curr Microbiol 68:88–95 [View Article][PubMed]
    [Google Scholar]
  37. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E., other authors. 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [View Article]
    [Google Scholar]
  38. Wilson K. 1987; Preparation of genomic DNA from bacteria. In Current Protocols in Molecular Biology pp 2.4.1–2.4.5Edited by Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. New York: Wiley;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000848
Loading
/content/journal/ijsem/10.1099/ijsem.0.000848
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF

Most cited Most Cited RSS feed