1887

Abstract

A Gram-stain-negative, facultatively aerobic, cream-coloured, ovoid-shaped, non-motile and psychrotolerant bacterial strain, PAMC 27389, was isolated from terrestrial soil collected on King George Island, Antarctica. Phylogenetic analysis based on the 16S rRNA gene sequence revealed that strain PAMC 27389 belongs to the genus , sharing highest similarities with the type strains of (96.9 %), (96.8 %), (96.5 %) and (95.4 %). Average nucleotide identity values between strain PAMC 27389 and the type strains of , , and were 70.8, 70.9, 71.0 and 70.5 %, respectively and the genome-to-genome distances were 18.4–19.1 %, indicating PAMC 27389 is clearly distinguished from the most closely related species. The genomic DNA G+C content was 60.1 mol%. Strain PAMC 27389 grew at 0–37 °C (optimally at 15–20 °C), at pH 5.5–9.0 (optimally at pH 6.5–7.0) and in the presence of 0.5–3.0 % (w/v) sea salt (optimally with 0.5 %). It lacked bacteriochlorophyll . The major fatty acids (>5 %) were summed feature 8 (Cω7 and/or Cω6) and Cω7 11-methyl. The major polar lipids were phosphatidylcholine, phosphatidylglycerol, an unidentified phospholipid, an unidentified aminolipid, an unidentified lipid and three unidentified aminophospholipids. The major respiratory quinone was Q-10. Based on the phenotypic, chemotaxonomic and genomic data presented, we propose the name sp. nov. with the type strain PAMC 27389 ( = KCTC 42640 = JCM 30764).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000841
2016-02-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/2/1068.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000841&mimeType=html&fmt=ahah

References

  1. Auch A. F., von Jan M., Klenk H. P., Göker M.. ( 2010;). Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2: 117–134 [CrossRef] [PubMed].
    [Google Scholar]
  2. Bernardet J.-F., Nakagawa Y., Holmes B.., ( 2002;). Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family.. Int J Syst Evol Microbiol 52: 1049–1070.
    [Google Scholar]
  3. Chen C.-X., Zhang X.-Y., Liu C., Yu Y., Liu A., Li G.-W., Li H., Chen X.-L., Chen B., other authors. ( 2013;). Pseudorhodobacter antarcticus sp. nov., isolated from Antarctic intertidal sandy sediment, and emended description of the genus Pseudorhodobacter Uchino et al. 2002 emend. Jung et al. 2012. Int J Syst Evol Microbiol 63: 849–854 [CrossRef] [PubMed].
    [Google Scholar]
  4. Collins M.. ( 1985;). Analysis of isoprenoid quinones. Methods Microbiol 18: 329–366 [CrossRef].
    [Google Scholar]
  5. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17: 368–376 [CrossRef] [PubMed].
    [Google Scholar]
  6. Fitch W. M.. ( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 27: 401–410.
    [Google Scholar]
  7. Goris J., Konstantinidis K. T., Klappenbach J. A., Coenye T., Vandamme P., Tiedje J. M.. ( 2007;). DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 57: 81–91 [CrossRef] [PubMed].
    [Google Scholar]
  8. Jung Y.-T., Oh K.-H., Oh T.-K., Yoon J.-H.. ( 2012;). Pseudorhodobacter aquimaris sp. nov., isolated from seawater, and emended description of the genus Pseudorhodobacter Uchino et al. 2002. Int J Syst Evol Microbiol 62: 100–105 [CrossRef] [PubMed].
    [Google Scholar]
  9. Kim O. S., Cho Y.-J., Lee K., Yoon S.-H., Kim M., Na H., Park S.-C., Jeon Y. S., Lee J.-H., other authors. ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62: 716–721 [CrossRef] [PubMed].
    [Google Scholar]
  10. Kovacs N.. ( 1956;). Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature 178: 703 [CrossRef] [PubMed].
    [Google Scholar]
  11. Lee Y. M., Kim G., Jung Y.-J., Choe C.-D., Yim J., Lee H., Hong S.. ( 2012;). Polar and Alpine Microbial Collection (PAMC): a culture collection dedicated to polar and alpine microorganisms. Polar Biol 35: 1433–1438 [CrossRef].
    [Google Scholar]
  12. Lee M.-H., Lee S.-Y., Jung Y.-T., Park S., Yoon J.-H.. ( 2013;). Pseudorhodobacter wandonensis sp. nov., isolated from wood falls, and emended description of the genus Pseudorhodobacter. Int J Syst Evol Microbiol 63: 1479–1484 [CrossRef] [PubMed].
    [Google Scholar]
  13. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H.. ( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2: 233–241 [CrossRef].
    [Google Scholar]
  14. Myers E. W., Sutton G. G., Delcher A. L., Dew I. M., Fasulo D. P., Flanigan M. J., Kravitz S. A., Mobarry C. M., Reinert K. H., other authors. ( 2000;). A whole-genome assembly of Drosophila. Science 287: 2196–2204 [CrossRef] [PubMed].
    [Google Scholar]
  15. Parte A. C.. ( 2014;). LPSN – list of prokaryotic names with standing in nomenclature. Nucleic Acids Res 42: (D1), D613–D616 [CrossRef] [PubMed].
    [Google Scholar]
  16. Richter M., Rosselló-Móra R.. ( 2009;). Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 106: 19126–19131 [CrossRef] [PubMed].
    [Google Scholar]
  17. Rosselló-Mora R., Amann R.. ( 2001;). The species concept for prokaryotes. FEMS Microbiol Rev 25: 39–67 [CrossRef] [PubMed].
    [Google Scholar]
  18. Rüger H.-J., Höfle M. G.. ( 1992;). Marine star-shaped-aggregate-forming bacteria: Agrobacterium atlanticum sp. nov.; Agrobacterium meteori sp. nov.; Agrobacterium ferrugineum sp. nov., nom. rev.; Agrobacterium gelatinovorum sp. nov., nom. rev.; and Agrobacterium stellulatum sp. nov., nom. rev. Int J Syst Bacteriol 42: 133–143 [CrossRef] [PubMed].
    [Google Scholar]
  19. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425 [PubMed].
    [Google Scholar]
  20. Sasser M.. ( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids. USFCC News Lett 20: 16.
    [Google Scholar]
  21. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S.. ( 2013;). mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30: 2725–2729 [CrossRef] [PubMed].
    [Google Scholar]
  22. Uchino Y., Hamada T., Yokota A.. ( 2002;). Proposal of Pseudorhodobacter ferrugineus gen. nov., comb. nov., for a non-photosynthetic marine bacterium, Agrobacterium ferrugineum, related to the genus Rhodobacter. J Gen Appl Microbiol 48: 309–319 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000841
Loading
/content/journal/ijsem/10.1099/ijsem.0.000841
Loading

Data & Media loading...

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error