1887

Abstract

A bacterial strain, designated KBP-31, was isolated from a water sample taken from the Banping Lake Wetland Park in Taiwan and characterized using a polyphasic taxonomic approach. Cells of strain KBP-31 were Gram-stain-negative, strictly aerobic, motile, light-yellow rods. Growth occurred at 10–37 °C (optimum 25 °C), at pH 6–8 (optimum pH 6) and with 0–1 % NaCl (w/v, optimum 0 %). Phylogenetic analyses based on 16S rRNA gene sequences showed that strain KBP-31 belonged to the genus and was most closely related to ATCC 51718 with a sequence similarity of 98.2 %. Strain KBP-31 contained summed feature 3 (comprising Cω7 and/or Cω6) and C as the predominant fatty acids. The major hydroxyl fatty acid was C 3-OH. The polar lipid profile consisted of phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, an uncharacterized aminophospholipid and two uncharacterized phospholipids. The DNA G+C content of the genomic DNA was 67.9 mol%. The DNA–DNA relatedness of strain KBP-31 with respect to recognized species of the genus was less than 70 %. On the basis of the phylogenetic inference and phenotypic data, strain KBP-31 should be classified as a novel species, for which the name sp. nov. is proposed. The type strain is KBP-31 ( = BCRC 80524 = KCTC 32238).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000832
2016-02-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/2/1052.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000832&mimeType=html&fmt=ahah

References

  1. Anzai Y., Kudo Y., Oyaizu H.. ( 1997;). The phylogeny of the genera Chryseomonas, Flavimonas, and Pseudomonas supports synonymy of these three genera. Int J Syst Bacteriol 47: 249–251 [CrossRef] [PubMed].
    [Google Scholar]
  2. Bowman J. P.. ( 2000;). Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. Int J Syst Evol Microbiol 50: 1861–1868 [CrossRef] [PubMed].
    [Google Scholar]
  3. Breznak J. A., Costilow R. N.. ( 2007;). Physicochemical factors in growth. . In Methods for General and Molecular Bacteriology, 3rd ed., pp. 309–329. Edited by Beveridge T. J., Breznak J. A., Marzluf G. A., Schmidt T. M., Snyder L. R.. Washington, D.C: American Society for Microbiology;.
    [Google Scholar]
  4. Chen W. M., Laevens S., Lee T. M., Coenye T., De Vos P., Mergeay M., Vandamme P.. ( 2001;). Ralstonia taiwanensis sp. nov., isolated from root nodules of Mimosa species and sputum of a cystic fibrosis patient. Int J Syst Evol Microbiol 51: 1729–1735 [CrossRef] [PubMed].
    [Google Scholar]
  5. Cole J. R., Wang Q., Cardenas E., Fish J., Chai B., Farris R. J., Kulam-Syed-Mohideen A. S., McGarrell D. M., Marsh T., other authors. ( 2009;). The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 37: D141–D145 [CrossRef] [PubMed].
    [Google Scholar]
  6. Embley T. M., Wait R.. ( 1994;). Structural lipids of eubacteria. . In Chemical Methods in Prokaryotic Systematics, pp. 121–161. Edited by Goodfellow M., O'Donnell A. G.. Chichester: Wiley;.
    [Google Scholar]
  7. Ezaki T., Hashimoto Y., Yabuuchi E.. ( 1989;). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39: 224–229 [CrossRef].
    [Google Scholar]
  8. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17: 368–376 [CrossRef] [PubMed].
    [Google Scholar]
  9. Felsenstein J.. ( 1993;). phylip (phylogeny inference package), version 3.5c. ., Distributed by the author Seattle, USA: Department of Genome Sciences, University of Washington;.
  10. Garrity G. M., Bell J. A., Lilburn T.. ( 2005;). Order I. Burkholderiales ord. nov.. , pp. 575. In Bergey's Manual of Systematic Bacteriology, Vol. 2 (The Proteobacteria., Part C (The Alpha-, Beta-, Delta-, and Epsilonproteobacteria) , 2nd ed.. Ed by D. J. Brenner, N. R. Krieg, J. T. Staley, G. M Garrity. New York: Springer; [CrossRef].
    [Google Scholar]
  11. Hall T. A.. ( 1999;). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41: 95–98.
    [Google Scholar]
  12. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H., other authors. ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62: 716–721 [CrossRef] [PubMed].
    [Google Scholar]
  13. Kimura M.. ( 1983;). Neutral Theory of Molecular Evolution Cambridge: Cambridge University Press; [CrossRef].
    [Google Scholar]
  14. Kluge A. G., Farris F. S.. ( 1969;). Quantitative phyletics and the evolution of anurans. Syst Zool 18: 1–32 [CrossRef].
    [Google Scholar]
  15. Malmqvist A., Welander T., Moore E., Ternstrom A., Molin G., Stenstrom I.. ( 1994;). Ideonella dechloratans gen. nov., sp. nov., a new bacterium capable of growing anaerobically with chlorate as an electron-acceptor. Syst Appl Microbiol 17: 58–64 [CrossRef].
    [Google Scholar]
  16. Mesbah M., Premachandran U., Whitman W. B.. ( 1989;). Precise measurement of the G-C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39: 159–167 [CrossRef].
    [Google Scholar]
  17. Noar J. D., Buckley D. H.. ( 2009;). Ideonella azotifigens sp. nov., an aerobic diazotroph of the Betaproteobacteria isolated from grass rhizosphere soil, and emended description of the genus Ideonella. Int J Syst Evol Microbiol 59: 1941–1946 [CrossRef] [PubMed].
    [Google Scholar]
  18. Nokhal T. H., Schlegel H. G.. ( 1983;). Taxonomic study of Paracoccus denitrificans. Int J Syst Bacteriol 33: 26–37 [CrossRef].
    [Google Scholar]
  19. Powers E. M.. ( 1995;). Efficacy of the Ryu nonstaining KOH technique for rapidly determining gram reactions of food-borne and waterborne bacteria and yeasts. Appl Environ Microbiol 61: 3756–3758 [PubMed].
    [Google Scholar]
  20. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425 [PubMed].
    [Google Scholar]
  21. Sasser M.. ( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids MIDI Technical Note 101 Newark, DE: MIDI Inc; (http://www.microbialid.com/PDF/TechNote_101.pdf).
    [Google Scholar]
  22. Schlegel H. G., Lafferty R., Krauss I.. ( 1970;). The isolation of mutants not accumulating poly-β-hydroxybutyric acid. Arch Mikrobiol 71: 283–294 [CrossRef] [PubMed].
    [Google Scholar]
  23. Spiekermann P., Rehm B. H. A, Kalscheuer R., Baumeister D., Steinbüchel A.. ( 1999;). A sensitive, viable-colony staining method using Nile red for direct screening of bacteria that accumulate polyhydroxyalkanoic acids and other lipid storage compounds. Arch Microbiol 171: 73–80 [CrossRef] [PubMed].
    [Google Scholar]
  24. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28: 2731–2739 [CrossRef] [PubMed].
    [Google Scholar]
  25. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25: 4876–4882 [CrossRef] [PubMed].
    [Google Scholar]
  26. Tindall B. J., Sikorski J., Smibert R. A., Krieg N. R.. ( 2007;). Phenotypic characterization and the principles of comparative systematics. . In Methods for General and Molecular Bacteriology, 3rd ed., pp. 330–393. Edited by Reddy C., Beveridge T. J., Breznak J. A., Marzluf G. A., Schmidt T. M., Snyder L. R.. Washington, D.C: American Society for Microbiology; [CrossRef].
    [Google Scholar]
  27. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D, Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C, Murray R. G. E, other authors. ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches of bacterial systematics. Int J Syst Bacteriol 37: 463–464 [CrossRef].
    [Google Scholar]
  28. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J.. ( 1991;). 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173: 697–703 [PubMed].
    [Google Scholar]
  29. Wen C. M., Tseng C. S., Cheng C. Y., Li Y. K.. ( 2002;). Purification, characterization and cloning of a chitinase from Bacillus sp. NCTU2. Biotechnol Appl Biochem 35: 213–219 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000832
Loading
/content/journal/ijsem/10.1099/ijsem.0.000832
Loading

Data & Media loading...

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error