1887

Abstract

A Gram-stain-positive, aerobic, non-motile, coccoid, arsenic-resistant actinobacterial strain, designated CM1E1, was isolated from the lateral root tissue of grown on a mine tailing in San Luis Potosi, Mexico. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain CM1E1 was clustered closely with species of the genus and showed the highest sequence similarity of 98.7 % to TA68. The DNA G+C content of strain CM1E1 was 74.5 mol% ( ). The major fatty acids were anteiso-C, anteiso-C and iso-C. The peptidoglycan of the cell wall contained lysine and alanine. The major respiratory quinones were MK-7(H) and MK-8(H). On the basis of the phenotypic characterization, phylogenetic relationships and chemotaxonomic analyses, strain CM1E1 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is CM1E1 ( = CCBAU 101092 = HAMBI 3625 = LMG 28671).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000830
2016-02-01
2020-01-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/2/1027.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000830&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J.. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res25:3389–3402 [CrossRef][PubMed]
    [Google Scholar]
  2. Bala M., Kaur C., Kaur I., Khan F., Mayilraj S.. 2012; Kocuria sediminis sp. nov., isolated from a marine sediment sample. Antonie van Leeuwenhoek101:469–478 [CrossRef][PubMed]
    [Google Scholar]
  3. Barzanti R., Ozino F., Bazzicalupo M., Gabbrielli R., Galardi F., Gonnelli C., Mengoni A.. 2007; Isolation and characterization of endophytic bacteria from the nickel hyperaccumulator plant Alyssum bertolonii . Microb Ecol53:306–316 [CrossRef][PubMed]
    [Google Scholar]
  4. Campanella J. J., Bitincka L., Smalley J.. 2003; MatGAT: an application that generates similarity/identity matrices using protein or DNA sequences. BMC Bioinformatics4:29 [CrossRef][PubMed]
    [Google Scholar]
  5. Cowan S. T., Steel K. J.. 1965; Manual for the Identification of Medical Bacteria London: Cambridge University Press;
    [Google Scholar]
  6. Dastager S. G., Tang S. K., Srinivasan K., Lee J. C., Li W. J.. 2014; Kocuria indica sp. nov., isolated from a sediment sample. Int J Syst Evol Microbiol64:869–874 [CrossRef][PubMed]
    [Google Scholar]
  7. De Ley J., Cattoir H., Reynaerts A.. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem12:133–142 [CrossRef][PubMed]
    [Google Scholar]
  8. Franco-Hernández M. O., Vásquez-Murrieta M. S., Patiño-Siciliano A., Dendooven L.. 2010; Heavy metals concentration in plants growing on mine tailings in Central Mexico. Bioresour Technol101:3864–3869 [CrossRef][PubMed]
    [Google Scholar]
  9. Galtier N., Gouy M., Gautier C.. 1996; seaview phylo_win: two graphic tools for sequence alignment and molecular phylogeny. Comput Appl Biosci12:543–548[PubMed]
    [Google Scholar]
  10. Jiao Y. S., Yan H., Ji Z. J., Liu Y. H., Sui X. H., Wang E. T., Guo B. L., Chen W. X., Chen W. F.. 2015; Rhizobium sophorae sp. nov. and Rhizobium sophoriradicis sp. nov., nitrogen-fixing rhizobial symbionts of the medicinal legume Sophora flavescens . Int J Syst Evol Microbiol65:497–503 [CrossRef][PubMed]
    [Google Scholar]
  11. Kaur C., Kaur I., Raichand R., Bora T. C., Mayilraj S.. 2011; Description of a novel actinobacterium Kocuria assamensis sp. nov., isolated from a water sample collected from the river Brahmaputra, Assam, India. Antonie van Leeuwenhoek99:721–726 [CrossRef][PubMed]
    [Google Scholar]
  12. Kim S. B., Nedashkovskaya O. I., Mikhailov V. V., Han S. K., Kim K. O., Rhee M. S., Bae K. S.. 2004; Kocuria marina sp. nov., a novel actinobacterium isolated from marine sediment. Int J Syst Evol Microbiol54:1617–1620 [CrossRef][PubMed]
    [Google Scholar]
  13. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H., other authors. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  14. Kimura M.. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  15. Komagata K., Suzuki K.. 1987; Lipid and cell-wall analysis in bacteria systematics. Methods Microbiol19:161–207[CrossRef]
    [Google Scholar]
  16. Kovács G., Burghardt J., Pradella S., Schumann P., Stackebrandt E., Màrialigeti K.. 1999; Kocuria palustris sp. nov. and Kocuria rhizophila sp. nov., isolated from the rhizoplane of the narrow-leaved cattail (Typha angustifolia). Int J Syst Bacteriol49:167–173 [CrossRef][PubMed]
    [Google Scholar]
  17. Krumova K., Nikolovska M., Groudeva V.. 2008; Isolation and identification of arsenic-transforming bacteria from arsenic contaminated sites in Bulgaria. Biotechnol & Biotechnol Eq22:721–728 [CrossRef]
    [Google Scholar]
  18. Lane D. J.. 1991; 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics pp115–175Edited by Stackebrandt E., Goodfellow M.. Chichester: Wiley;
    [Google Scholar]
  19. Li W. J., Zhang Y. Q., Schumann P., Chen H. H., Hozzein W. N., Tian X. P., Xu L. H., Jiang C. L.. 2006; Kocuria aegyptia sp. nov., a novel actinobacterium isolated from a saline, alkaline desert soil in Egypt. Int J Syst Evol Microbiol56:733–737 [CrossRef][PubMed]
    [Google Scholar]
  20. Mandel M., Marmur J.. 1968; Use of ultraviolet absorbance-temperature profile for determining the guanine plus cytosine content of DNA. Methods Enzymol12B:195–206 [CrossRef]
    [Google Scholar]
  21. Marquez-Santacruz H. A., Hernández-Leon R., Orozco-Mosqueda M. C., Velázquez-Sepulveda I., Santoyo G.. 2010; Diversity of bacterial endophytes in roots of Mexican husk tomato plants (Physalis ixocarpa) and their detection in the rhizosphere. Genet Mol Res9:2372–2380 [CrossRef][PubMed]
    [Google Scholar]
  22. Mayilraj S., Kroppenstedt R. M., Suresh K., Saini H. S.. 2006; Kocuria himachalensis sp. nov., an actinobacterium isolated from the Indian Himalayas. Int J Syst Evol Microbiol56:1971–1975 [CrossRef][PubMed]
    [Google Scholar]
  23. Park E.-J., Roh S. W., Kim M.-S., Jung M.-J., Shin K. S., Bae J.-W.. 2010a; Kocuria koreensis sp. nov., isolated from fermented seafood. Int J Syst Evol Microbiol60:140–143 [CrossRef][PubMed]
    [Google Scholar]
  24. Park E.-J., Kim M.-S., Roh S. W., Jung M.-J., Bae J.-W.. 2010b; Kocuria atrinae sp. nov., isolated from traditional Korean fermented seafood. Int J Syst Evol Microbiol60:914–918 [CrossRef][PubMed]
    [Google Scholar]
  25. Pridham T. G., Gottlieb D.. 1948; The utilization of carbon compounds by some actinomycetales as an aid for species determination. J Bacteriol56:107–114[PubMed]
    [Google Scholar]
  26. Pridham T. G., Lyons A. J. Jr.. 1961; Streptomyces albus (Rossi-Doria) Waksman et Henrici: taxonomic study of strains labeled Streptomyces albus . J Bacteriol81:431–441[PubMed]
    [Google Scholar]
  27. Rathnayake I. V. N, Megharaj M., Krishnamurti G. S. R, Bolan N. S., Naidu R.. 2013; Heavy metal toxicity to bacteria - are the existing growth media accurate enough to determine heavy metal toxicity?. Chemosphere90:1195–1200 [CrossRef][PubMed]
    [Google Scholar]
  28. Reddy G. S., Prakash J. S., Prabahar V., Matsumoto G. I., Stackebrandt E., Shivaji S.. 2003; Kocuria polaris sp. nov., an orange-pigmented psychrophilic bacterium isolated from an Antarctic cyanobacterial mat sample. Int J Syst Evol Microbiol53:183–187 [CrossRef][PubMed]
    [Google Scholar]
  29. Saitou N., Nei M.. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol4:406–425[PubMed]
    [Google Scholar]
  30. Sasser M.. 2001; Identification of bacteria by gas chromatography of cellular fatty acids MIDI Technical Note 101 (revised February 2001) Newark, DE: MIDI Inc;
    [Google Scholar]
  31. Schleifer K. H.. 1985; Analysis of chemical composition and primary structure of murein. Methods Microbiol18:123–156 [CrossRef]
    [Google Scholar]
  32. Schleifer K. H., Kandler O.. 1972; Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev36:407–477[PubMed]
    [Google Scholar]
  33. Seo Y. B., Kim D. E., Kim G. D., Kim H. W., Nam S. W., Kim Y. T., Lee J. H.. 2009; Kocuria gwangalliensis sp. nov., an actinobacterium isolated from seawater. Int J Syst Evol Microbiol59:2769–2772 [CrossRef][PubMed]
    [Google Scholar]
  34. Shirling E. B., Gottlieb D.. 1966; Methods for characterization of Streptomyces species. Int J Syst Bacteriol16:313–340 [CrossRef]
    [Google Scholar]
  35. Stackebrandt E., Goebel B. M.. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol44:846–849 [CrossRef]
    [Google Scholar]
  36. Stackebrandt E., Koch C., Gvozdiak O., Schumann P.. 1995; Taxonomic dissection of the genus Micrococcus Kocuria gen. nov., Nesterenkonia gen. nov., Kytococcus gen. nov., Dermacoccus gen. nov., and Micrococcus Cohn 1872 gen. emend. Int J Syst Bacteriol45:682–692 [CrossRef][PubMed]
    [Google Scholar]
  37. Stackebrandt E., Schumann P.. 2012; Genus V. Kocuria gen. nov Stackebrandt & Schumann 1995, 690VP . In Bergey's Manual of Systematic Bacteriologyvol 5 pp626–635Edited by Whitman W. B., Goodfellow M., Kämpfer P., Busse H.-J., Trujillo M. E., Ludwig W., Suzuki K., Parte A.. 5 New York: Springer;
    [Google Scholar]
  38. Sun L. N., Zhang Y. F., He L. Y., Chen Z. J., Wang Q. Y., Qian M., Sheng X. F.. 2010; Genetic diversity and characterization of heavy metal-resistant-endophytic bacteria from two copper-tolerant plant species on copper mine wasteland. Bioresour Technol101:501–509 [CrossRef][PubMed]
    [Google Scholar]
  39. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. 2011; mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol28:2731–2739 [CrossRef][PubMed]
    [Google Scholar]
  40. Tang S. K., Wang Y., Lou K., Mao P. H., Xu L. H., Jiang C. L., Kim C. J., Li W. J.. 2009; Kocuria halotolerans sp. nov., an actinobacterium isolated from a saline soil in China. Int J Syst Evol Microbiol59:1316–1320 [CrossRef][PubMed]
    [Google Scholar]
  41. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res25:4876–4882 [CrossRef][PubMed]
    [Google Scholar]
  42. Tighe S. W., de Lajudie P., Dipietro K., Lindström K., Nick G., Jarvis B. D.. 2000; Analysis of cellular fatty acids and phenotypic relationships of Agrobacterium, Bradyrhizobium, Mesorhizobium, Rhizobium and Sinorhizobium species using the Sherlock Microbial Identification System. Int J Syst Evol Microbiol50:787–801 [CrossRef][PubMed]
    [Google Scholar]
  43. Tindall B. J., Rosselló-Móra R., Busse H.-J., Ludwig W., Kämpfer P.. 2010; Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol60:249–266 [CrossRef][PubMed]
    [Google Scholar]
  44. Tvrzová L., Schumann P., Sedlácek I., Pácová Z., Spröer C., Verbarg S., Kroppenstedt R. M.. 2005; Reclassification of strain CCM 132, previously classified as Kocuria varians, as Kocuria carniphila sp. nov. Int J Syst Evol Microbiol55:139–142 [CrossRef][PubMed]
    [Google Scholar]
  45. Wang K., Zhang L., Liu Y., Pan Y., Meng L., Xu T., Zhang C., Liu H., Hong S., other authors. 2015; Kocuria dechangensis sp. nov., an actinobacterium isolated from saline and alkaline soils. Int J Syst Evol Microbiol65:3024–3030 [CrossRef][PubMed]
    [Google Scholar]
  46. Weeger W., Lièvremont D., Perret M., Lagarde F., Hubert J. C., Leroy M., Lett M. C.. 1999; Oxidation of arsenite to arsenate by a bacterium isolated from an aquatic environment. Biometals12:141–149 [CrossRef][PubMed]
    [Google Scholar]
  47. Yun J.-H., Roh S. W., Jung M.-J., Kim M.-S., Park E.-J., Shin K.-S., Nam Y.-D., Bae J.-W.. 2011; Kocuria salsicia sp. nov., isolated from salt-fermented seafood. Int J Syst Evol Microbiol61:286–289 [CrossRef][PubMed]
    [Google Scholar]
  48. Zhou J., Bruns M. A., Tiedje J. M.. 1996; DNA recovery from soils of diverse composition. Appl Environ Microbiol62:316–322[PubMed]
    [Google Scholar]
  49. Zhou G., Luo X., Tang Y., Zhang L., Yang Q., Qiu Y., Fang C.. 2008; Kocuria flava sp. nov. and Kocuria turfanensis sp. nov., airborne actinobacteria isolated from Xinjiang, China. Int J Syst Evol Microbiol58:1304–1307 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000830
Loading
/content/journal/ijsem/10.1099/ijsem.0.000830
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error