1887

Abstract

We analysed, using a polyphasic taxonomic approach, two bacterial strains coded BSTT30 and BSTT40, isolated in the course of a study of endophytic bacteria occurring in the stems and roots of potatoes growing in soil from Salamanca, Spain. The 16S rRNA gene sequence was identical in both strains and had 98.4 % identity with respect to the closest relatives Et1/99 and ATCC29283. E63 and A37 were also closely related with 98.2 % sequence similarities, so the novel strains were classified within the genus . The analysis of the housekeeping genes and confirmed the phylogenetic affiliation of strains BSTT30 and BSTT40 with similarities of lower than 90 % in all cases with respect to the closest relatives mentioned above. The respiratory quinone of strain BSTT30 was Q8. The major fatty acids were C16 : 0, C16 : 1ω7/16 : 1ω6 in summed feature 3 and C18 : 1ω7/18 : 2ω6,9 in summed feature 8. The novel strains were oxidase-negative and catalase-positive. Glucose was fermented without gas production. They were negative for arginine dihydrolase, urease and indole production. The strains could grow at 35 °C and at pH 10. DNA G+C content was 50.1 mol%. DNA–DNA hybridization results showed values of lower than 29 % relatedness with respect to the type strains of the four most closely related species. Therefore, the combined genotypic, phenotypic and chemotaxonomic data support the classification of strains BSTT30 and BSTT40 into a novel species of the genus , for which the name sp. nov. is proposed. The type strain is BSTT30 ( = LMG 28457, CECT 8692).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000820
2016-02-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/2/975.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000820&mimeType=html&fmt=ahah

References

  1. Altschul S. F. , Gish W. , Miller W. , Myers E. W. , Lipman D. J. . ( 1990;). Basic local alignment search tool. J Mol Biol 215: 403–410 [CrossRef] [PubMed].
    [Google Scholar]
  2. Aravind R. , Kumar A. , Eapen S. J. , Ramana K. V. . ( 2009;). Endophytic bacterial flora in root and stem tissues of black pepper (Piper nigrum L.) genotype: isolation, identification and evaluation against Phytophthora capsici . Lett Appl Microbiol 48: 58–64 [CrossRef] [PubMed].
    [Google Scholar]
  3. Brown E. W. , Davis R. M. , Gouk C. , van der Zwet T. . ( 2000;). Phylogenetic relationships of necrogenic Erwinia and Brenneria species as revealed by glyceraldehyde-3-phosphate dehydrogenase gene sequences. Int J Syst Evol Microbiol 50: 2057–2068 [CrossRef] [PubMed].
    [Google Scholar]
  4. Campillo T. , Luna E. , Portier P. , Fischer-Le Saux M. , Lapitan N. , Tisserat N. A. , Leach J. E. . ( 2015;). Erwinia iniecta sp. nov., isolated from Russian wheat aphids (Diuraphis noxia). Int J Syst Evol Microbiol 65: 3625–3633 [CrossRef] [PubMed].
    [Google Scholar]
  5. Chun J. , Goodfellow M. . ( 1995;). A phylogenetic analysis of the genus Nocardia with 16S rRNA gene sequences. Int J Syst Bacteriol 45: 240–245 [CrossRef] [PubMed].
    [Google Scholar]
  6. Doetsch R. N. . ( 1981;). Determinative Methods of Light Microscopy. . In Manual of Methods for General Bacteriology, pp. 21–33. Edited by Gerdhardt P. , Murray R. G. E. , Costilow R. N. , Nester E. W. , Wood W. A. , Krieg N. R. , Phillips G. B. . Washington: American Society for Microbiology;.
    [Google Scholar]
  7. Ezaki T. , Hashimoto Y. , Yabuuchi E. . ( 1989;). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39: 224–229 [CrossRef].
    [Google Scholar]
  8. García-Fraile P. , Carro L. , Robledo M. , Ramírez-Bahena M. H. , Flores-Félix J. D. , Fernández M. T. , Mateos P. F. , Rivas R. , Igual J. M. , other authors . ( 2012;). Rhizobium promotes non-legumes growth and quality in several production steps: towards a biofertilization of edible raw vegetables healthy for humans. PLoS One 7:.[CrossRef]
    [Google Scholar]
  9. Gardan L. , Christen R. , Achouak W. , Prior P. . ( 2004;). Erwinia papayae sp. nov., a pathogen of papaya (Carica papaya). Int J Syst Evol Microbiol 54: 107–113 [CrossRef] [PubMed].
    [Google Scholar]
  10. Gavini F. , Mergaert J. , Beji A. , Mielcarek C. , Izard D. , Kersters K. , De Ley J. . ( 1989;). Transfer of Enterobacter agglomerans (Beijerinck 1888) Ewing and Fife 1972 to Pantoea gen. nov. as Pantoea agglomerans comb. nov. and description of Pantoea dispersa sp. nov. Int J Syst Bacteriol 39: 337–345 [CrossRef].
    [Google Scholar]
  11. Geider K. , Auling G. , Du Z. , Jakovljevic V. , Jock S. , Völksch B. . ( 2006;). Erwinia tasmaniensis sp. nov., a non-phytopathogenic bacterium from apple and pear trees. Int J Syst Evol Microbiol 56: 2937–2943 [CrossRef] [PubMed].
    [Google Scholar]
  12. Hauben L. , Swings J. . ( 2005;). Genus XIII. Erwinia Winslow, Broadhurst, Buchanan, Krumwiede, Rogers and Smith 1920, 209AL emend. Hauben, Moore, Vauterin, Steenackers, Megaert, Verdonck and Swings 1999a, 1. . In Bergey's Manual of Systematic Bacteriology , 2nd edn., vol. 2, part B, pp. 670–679. Edited by Brenner D. J. , Krieg N. R. , Staley J. T. , Garrity G. M. . New York: Springer;.
    [Google Scholar]
  13. Hauben L. , Moore E. R. B , Vauterin L. , Steenackers M. , Mergaert J. , Verdonck L. , Swings J. . ( 1998;). Phylogenetic position of phytopathogens within the Enterobacteriaceae . Syst Appl Microbiol 21: 384–397 [CrossRef] [PubMed].
    [Google Scholar]
  14. Kim O. S. , Cho Y. J. , Lee K. , Yoon S. H. , Kim M. , Na H. , Park S. C. , Jeon Y. S. , Lee J. H. , other authors . ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62: 716–721 [CrossRef] [PubMed].
    [Google Scholar]
  15. Kimura M. . ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16: 111–120 [CrossRef] [PubMed].
    [Google Scholar]
  16. King E. O. , Ward M. K. , Raney D. E. . ( 1954;). Two simple media for the demonstration of pyocyanin and fluorescin. J Lab Clin Med 44: 301–307 [PubMed].
    [Google Scholar]
  17. Lelliot R. , Dickey R. . ( 1984;). Genus VII. Erwinia . . In Bergey's Manual of Systematic Bacteriology, vol. 1, pp. 469–476. Edited by Krieg N. R. , Holt J. G. . Baltimore, London: Williams and Wilkins;.
    [Google Scholar]
  18. López M. M. , Roselló M. , Llop P. , Ferrer S. , Christen R. , Gardan L. . ( 2011;). Erwinia piriflorinigrans sp. nov., a novel pathogen that causes necrosis of pear blossoms. Int J Syst Evol Microbiol 61: 561–567 [CrossRef] [PubMed].
    [Google Scholar]
  19. Mandel M. , Marmur J. . ( 1968;). Use of ultraviolet absorbance temperature profile for determining the guanine plus cytosine content of DNA. Methods Enzymol 12: 195–206 [CrossRef].
    [Google Scholar]
  20. Matsuura T. , Shinohara H. , Inoue Y. , Azegami K. , Tsushima S. , Tsukamoto T. , Mizuno A. . ( 2007;). Erwinia isolates from the bacterial shoot blight of pear in Japan are closely related to Erwinia pyrifoliae based on phylogenetic analyses of gyrB and rpoD genes. J Gen Plant Pathol 73: 53–58 [CrossRef].
    [Google Scholar]
  21. Matsuura T. , Mizuno A. , Tsukamoto T. , Shimizu Y. , Saito N. , Sato S. , Kikuchi S. , Uzuki T. , Azegami K. , Sawada H. . ( 2012;). Erwinia uzenensis sp. nov., a novel pathogen that affects European pear trees (Pyrus communis L.). Int J Syst Evol Microbiol 62: 1799–1803 [CrossRef] [PubMed].
    [Google Scholar]
  22. Mergaert J. , Hauben L. , Cnockaert M. C. , Swings J. . ( 1999;). Reclassification of non-pigmented Erwinia herbicola strains from trees as Erwinia billingiae sp. nov. Int J Syst Bacteriol 49: 377–383 [CrossRef] [PubMed].
    [Google Scholar]
  23. Moretti C. , Hosni T. , Vandemeulebroecke K. , Brady C. , De Vos P. , Buonaurio R. , Cleenwerck I. . ( 2011;). Erwinia oleae sp. nov., isolated from olive knots caused by Pseudomonas savastanoi pv. savastanoi . Int J Syst Evol Microbiol 61: 2745–2752 [CrossRef] [PubMed].
    [Google Scholar]
  24. Peix A. , Rivas R. , Mateos P. F. , Martínez-Molina E. , Rodríguez-Barrueco C. , Velázquez E. . ( 2003;). Pseudomonas rhizosphaerae sp. nov., a novel species that actively solubilizes phosphate in vitro . Int J Syst Evol Microbiol 53: 2067–2072 [CrossRef] [PubMed].
    [Google Scholar]
  25. Peix A. , Berge O. , Rivas R. , Abril A. , Velázquez E. . ( 2005;). Pseudomonas argentinensis sp. nov., a novel yellow pigment-producing bacterial species, isolated from rhizospheric soil in Cordoba, Argentina. Int J Syst Evol Microbiol 55: 1107–1112 [CrossRef] [PubMed].
    [Google Scholar]
  26. Rivas R. , García-Fraile P. , Mateos P. F. , Martínez-Molina E. , Velázquez E. . ( 2007;). Characterization of xylanolytic bacteria present in the bract phyllosphere of the date palm Phoenix dactylifera . Lett Appl Microbiol 44: 181–187 [CrossRef] [PubMed].
    [Google Scholar]
  27. Rogers J. S. , Swofford D. L. . ( 1998;). A fast method for approximating maximum likelihoods of phylogenetic trees from nucleotide sequences. Syst Biol 47: 77–89 [CrossRef] [PubMed].
    [Google Scholar]
  28. Rojas A. M. , de Los Rios J. E. , Fischer-Le Saux M. , Jimenez P. , Reche P. , Bonneau S. , Sutra L. , Mathieu-Daudé F. , McClelland M. . ( 2004;). Erwinia toletana sp. nov., associated with Pseudomonas savastanoi-induced tree knots. Int J Syst Evol Microbiol 54: 2217–2222 [CrossRef] [PubMed].
    [Google Scholar]
  29. Saitou N. , Nei M. . ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425 [PubMed].
    [Google Scholar]
  30. Sasser M. . ( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids MIDI Technical Note 101 Newark, DE: MIDI Inc;.
    [Google Scholar]
  31. Skrodenyte˙-Arbačiauskiene˙ V. , Radžiute˙ S. , Stunže˙nas V. , Bu¯da V. . ( 2012;). Erwinia typographi sp. nov., isolated from bark beetle (Ips typographus) gut. Int J Syst Evol Microbiol 62: 942–948 [CrossRef] [PubMed].
    [Google Scholar]
  32. Tamura K. , Stecher G. , Peterson D. , Filipski A. , Kumar S. . ( 2013;). mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30: 2725–2729 [CrossRef] [PubMed].
    [Google Scholar]
  33. Thompson J. D. , Gibson T. J. , Plewniak F. , Jeanmougin F. , Higgins D. G. . ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25: 4876–4882 [CrossRef] [PubMed].
    [Google Scholar]
  34. Tindall B. J. . ( 1990a;). A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13: 128–130 [CrossRef].
    [Google Scholar]
  35. Tindall B. J. . ( 1990b;). Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 66: 199–202 [CrossRef].
    [Google Scholar]
  36. Waldee E. L. . ( 1945;). Comparative studies of some peritrichous phytopathogenic bacteria PhD thesis Iowa State University, Iowa, USA;.
    [Google Scholar]
  37. Wayne L. G. , Brenner D. J. , Colwell R. R. , Grimont P. A. D , Kandler O. , Krichevsky M. I. , Moore L. H. , Moore W. E. C , Murray R. G. E , other authors . ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37: 463–464 [CrossRef].
    [Google Scholar]
  38. Willems A. , Doignon-Bourcier F. , Goris J. , Coopman R. , de Lajudie P. , De Vos P. , Gillis M. . ( 2001;). DNA-DNA hybridization study of Bradyrhizobium strains. Int J Syst Evol Microbiol 51: 1315–1322 [CrossRef] [PubMed].
    [Google Scholar]
  39. Winslow C. E. A , Broadhurst J. , Buchanan R. E. , Krumwiede C., Jr. , Rogers L. A. , Smith G. H. . ( 1920;). The families and genera of the bacteria. Final report of the Committee of the Society of American Bacteriologists on characterization and classification of bacterial types. J Bacteriol 5: 191–229 [PubMed].
    [Google Scholar]
  40. Yamamoto S. , Harayama S. . ( 1998;). Phylogenetic relationships of Pseudomonas putida strains deduced from the nucleotide sequences of gyrB and rpoD and 16S rRNA genes. Int J Syst Bacteriol 48: 813–819 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000820
Loading
/content/journal/ijsem/10.1099/ijsem.0.000820
Loading

Data & Media loading...

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error