1887

Abstract

Strain P1297 was isolated in the frame of a project aimed on the psychrotolerant microbiota occurring in water sources. The strain initially identified as a tentative species of the genus was rod-shaped, Gram-stain-negative, facultatively anaerobic and oxidase-positive. Subsequently, 16S rRNA gene sequence analysis placed strain P1297 within the class and showed TRO-001DR8 as the closest phylogenetic relative with 99.28 % 16S rRNA gene sequence similarity. Digital DDH and average nucleotide identity (ANI) were determined to evaluate the genomic relationship between strain P1297 and CCM 7607. Digital DDH estimation (31.3 ± 2.46 %) as well as ANI (85.6001 %; reciprocal value 85.3277 %) proved the dissimilarity of strain P1297. Further investigation using phenotyping, automated ribotyping, whole-cell protein profiling and PCR-fingerprinting methods showed a distinct taxonomic position of strain P1297 among hitherto described species of the genus . DNA–DNA hybridization experiments revealed low binding values between strain P1297 and CCM 7607 (57 ± 3 %) and CCM 7935 (41 ± 5 %). The DNA G+C content of strain P1297 was 60.3 mol%. The predominant fatty acids were Cω7/ iso-C 2-OH (47.0 %), C (24.5 %) and Cω7 (10.6 %), and the quinone system contained predominantly ubiquinone Q-8. The polar lipids detected were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, two unidentified phospholipids and one unidentified aminophospholipid. Obtained results of genotypic and chemotaxonomic methods clearly proved that strain P1297 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is P1297 ( = CCM 7557 = LMG 28989 = CCUG 67440).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000819
2016-02-01
2020-04-08
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/2/962.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000819&mimeType=html&fmt=ahah

References

  1. Adav S. S., Lee D.-J., Lai J.-Y.. 2010; Potential cause of aerobic granular sludge breakdown at high organic loading rates. Appl Microbiol Biotechnol85:1601–1610 [CrossRef][PubMed]
    [Google Scholar]
  2. Altenburger P., Kämpfer P., Makristathis A., Lubitz W., Busse H.-J.. 1996; Classification of bacteria isolated from a medieval wall painting. J Biotechnol47:39–52 [CrossRef]
    [Google Scholar]
  3. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J.. 1997; Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res25:3389–3402 [CrossRef][PubMed]
    [Google Scholar]
  4. Aravena-Román M., Beaz-Hidalgo R., Inglis T. J. J, Riley T. V., Martínez-Murcia A. J., Chang B. J., Figueras M. J.. 2013; Aeromonas australiensis sp. nov., isolated from irrigation water. Int J Syst Evol Microbiol63:2270–2276 [CrossRef][PubMed]
    [Google Scholar]
  5. Auch A. F., Klenk H.-P., Göker M.. 2010a; Standard operating procedure for calculating genome-to-genome distances based on high-scoring segment pairs. Stand Genomic Sci2:142–148 [CrossRef][PubMed]
    [Google Scholar]
  6. Auch A. F., von Jan M., Klenk H.-P., Göker M.. 2010b; Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci2:117–134 [CrossRef][PubMed]
    [Google Scholar]
  7. Caravieri F. A., Ferreira A. J., Ferreira A., Clivati D., de Miranda V. F. O, Araújo W. L.. 2014; Bacterial community associated with traps of the carnivorous plants Utricularia hydrocarpa and Genlisea filiformis . Aquat Bot116:8–12 [CrossRef]
    [Google Scholar]
  8. Christian R. R., Capone D. G.. 2002; Overview of issues in aquatic microbial ecology. In Manual of Environmental Microbiology, 2nd edition. pp323–328Edited by Hurst C. J., Crawford R. L., Knudsen G. R., McInerney M. J., Stetzenbach L. D.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  9. Chung A. P., Tiago I., Nobre M. F., Veríssimo A., Morais P. V.. 2013; Glaciimonas singularis sp. nov., isolated from a uranium mine wastewater treatment plant. Int J Syst Evol Microbiol63:2344–2350 [CrossRef][PubMed]
    [Google Scholar]
  10. Coenye T., Falsen E., Vancanneyt M., Hoste B., Govan J. R. W, Kersters K., Vandamme P.. 1999; Classification of Alcaligenes faecalis-like isolates from the environment and human clinical samples as Ralstonia gilardii sp. nov. Int J Syst Bacteriol49:405–413 [CrossRef][PubMed]
    [Google Scholar]
  11. De Ley J., Cattoir H., Reynaerts A.. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem12:133–142 [CrossRef][PubMed]
    [Google Scholar]
  12. Euzéby J. P.. 1997; List of Bacterial Names with Standing in Nomenclature: a folder available on the Internet. Int J Syst Bacteriol47:590–592 [CrossRef]
    [Google Scholar]
  13. Gray S. M., Akob D. M., Green S. J., Kostka J. E.. 2012; The bacterial composition within the Sarracenia purpurea model system: local scale differences and the relationship with the other members of the food web. PLoS One7:e50969 [CrossRef][PubMed]
    [Google Scholar]
  14. Hughes M. S., James G., Ball N., Scally M., Malik R., Wigney D. I., Martin P., Chen S., Mitchell D., Love D. N.. 2000; Identification by 16S rRNA gene analyses of a potential novel mycobacterial species as an etiological agent of canine leproid granuloma syndrome. J Clin Microbiol38:953–959[PubMed]
    [Google Scholar]
  15. Huss V. A. R, Festl H., Schleifer K. H.. 1983; Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol4:184–192 [CrossRef][PubMed]
    [Google Scholar]
  16. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H., Yi H., Won S., Chun J.. 2012; Introducing EzTaxon: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol62:716–721[CrossRef]
    [Google Scholar]
  17. Kim B. S., Seo J. R., Park D. H.. 2013; Variation and characterization of bacterial communities contaminating two saunas operated at 64 °C and 76 °C. J Bacteriol Virol43:195–203[CrossRef]
    [Google Scholar]
  18. Kosina M., Barták M., Mašlanˇová I., Pascutti A. V., Šedo O., Lexa M., Sedláček I.. 2013; Pseudomonas prosekii sp. nov., a novel psychrotrophic bacterium from Antarctica. Curr Microbiol67:637–646 [CrossRef][PubMed]
    [Google Scholar]
  19. Lau H.-T., Faryna J., Triplett E. W.. 2006; Aquitalea magnusonii gen. nov., sp. nov., a novel Gram-negative bacterium isolated from a humic lake. Int J Syst Evol Microbiol56:867–871 [CrossRef][PubMed]
    [Google Scholar]
  20. Lee C. M., Weon H.-Y., Kim Y.-J., Son J.-A., Yoon S.-H., Koo B.-S., Kwon S.-W.. 2009; Aquitalea denitrificans sp. nov., isolated from a Korean wetland. Int J Syst Evol Microbiol59:1045–1048 [CrossRef][PubMed]
    [Google Scholar]
  21. Meier-Kolthoff J. P., Auch A. F., Klenk H.-P., Göker M.. 2013; Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics14:60 [CrossRef][PubMed]
    [Google Scholar]
  22. Pot B., Vandamme P., Kersters K.. 1994; Analysis of electrophoretic whole-organism protein fingerprints. In Modern Microbiological methods: Chemical Methods in Prokaryotic Systematics pp493–521Edited by Goodfellow M., O'Donnell A. G.. Chichester: Wiley;
    [Google Scholar]
  23. Roth T., Foley J., Worth J., Piovia-Scott J., Pope K., Lawler S.. 2013; Bacterial flora on Cascades frogs in the Klamath mountains of California. Comp Immunol Microbiol Infect Dis36:591–598 [CrossRef][PubMed]
    [Google Scholar]
  24. Saitou N., Nei M.. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol4:406–425[PubMed]
    [Google Scholar]
  25. Sasser M.. 1990; Identification of bacteria by gas chromatography of cellular fatty acids MIDI Technical Note 101 Newark, DE: MIDI Inc;
    [Google Scholar]
  26. Stolz A., Busse H.-J., Kämpfer P.. 2007; Pseudomonas knackmussii sp. nov. Int J Syst Evol Microbiol57:572–576 [CrossRef][PubMed]
    [Google Scholar]
  27. Švec P., Pantu˚ček R., Petráš P., Sedláček I., Nováková D.. 2010a; Identification of Staphylococcus spp. using (GTG)5-PCR fingerprinting. Syst Appl Microbiol33:451–456 [CrossRef][PubMed]
    [Google Scholar]
  28. Švec P., Kukletová M., Sedlácˇek I.. 2010b; Comparative evaluation of automated ribotyping and RAPD-PCR for typing of Lactobacillus spp. occurring in dental caries. Anton Leeuw98:85–92 [CrossRef][PubMed]
    [Google Scholar]
  29. Švec P., Vandamme P., Bryndová H., Holochová P., Kosina M., Masˇlanˇová I., Sedlácˇek I.. 2012; Enterococcus plantarum sp. nov., isolated from plants. Int J Syst Evol Microbiol62:1499–1505 [CrossRef][PubMed]
    [Google Scholar]
  30. Tamura K., Dudley J., Nei M., Kumar S.. 2007; mega4: molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol24:1596–1599 [CrossRef][PubMed]
    [Google Scholar]
  31. Tindall B. J.. 1990a; Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett66:199–202 [CrossRef]
    [Google Scholar]
  32. Tindall B. J.. 1990b; A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol13:128–130 [CrossRef]
    [Google Scholar]
  33. Turki Y., Mehri I., Cherif H., Hassen A., Ouzari H.. 2013; Effect of biological treatment and ultraviolet (UV)-C radiation disinfection process on wastewater bacterial community as assessed by denaturing gradient gel electrophoresis (DGGE) fingerprints. Afr J Microbiol Res7:4927–4933 [CrossRef]
    [Google Scholar]
  34. Versalovic J., Schneider M., de Brulin F. J., Lupski J. R.. 1994; Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction. Methods Mol Cell Biol5:25–40
    [Google Scholar]
  35. Vlková E., Killer J., Kmet V., Rada V., Musilová Š., Bunešová V., Hovorková P., Božík M., Salmonová H., Rajchard J.. 2015; Identification of microbiota associated with Pectinatella magnifica in South Bohemia. Biologia70:365–371 [CrossRef]
    [Google Scholar]
  36. Weber K. A., Hedrick D. B., Peacock A. D., Thrash J. C., White D. C., Achenbach L. A., Coates J. D.. 2009; Physiological and taxonomic description of the novel autotrophic, metal oxidizing bacterium, Pseudogulbenkiania sp. strain 2002. Appl Microbiol Biotechnol83:555–565 [CrossRef][PubMed]
    [Google Scholar]
  37. Woo H. L., Hazen T. C., Simmons B. A., DeAngelis K. M.. 2014; Enzyme activities of aerobic lignocellulolytic bacteria isolated from wet tropical forest soils. Syst Appl Microbiol37:60–67 [CrossRef][PubMed]
    [Google Scholar]
  38. Yoon J.-H., Lee S.-Y., Jung Y.-T., Lee J.-S., Lee K.-C.. 2013; Litorisediminicola beolgyonensis gen. nov., sp. nov., isolated from a coastal sediment. Int J Syst Evol Microbiol63:2025–2031 [CrossRef][PubMed]
    [Google Scholar]
  39. Zhang Z., Schwartz S., Wagner L., Miller W.. 2000; A greedy algorithm for aligning DNA sequences. J Comput Biol7:203–214 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000819
Loading
/content/journal/ijsem/10.1099/ijsem.0.000819
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error