1887

Abstract

A Gram-staining-negative, yellow-pigmented strain, designated SYP-B804, was isolated from the rhizosphere of . The strain was rod-shaped with a single polar flagellum. The optimum temperature and pH required for growth of the strain were 28–32 °C and pH 7–8, respectively. 16S rRNA gene sequence analysis indicated that strain SYP-B804 showed highest 16S rRNA gene sequence similarity with DSM 12574 (98.0 %). However, the DNA–DNA relatedness value between them (38.1 ± 0.6 %) was less than the threshold value for the delineation of genomic species. Ubiquinone-8 (Q-8) was the predominant quinone. The major fatty acids were iso-C and iso-Cω9. The major polar lipids of the strain were diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. The G+C content of the genomic DNA was 71 %. On the basis of phenotypic, chemotaxonomic and molecular characteristics, strain SYP-B804 merits recognition as a representative of a novel species of the genus , for which the name sp. nov. is proposed, with SYP-B804 ( = KCTC 42211 = JCM 30329) as the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000816
2016-02-01
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/2/946.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000816&mimeType=html&fmt=ahah

References

  1. Baik K. S., Park S. C., Kim M. S., Kim E. M., Park C., Chun J., Seong C. N.. ( 2008;). Luteimonas marina sp. nov., isolated from seawater. Int J Syst Evol Microbiol 58: 2904–2908 [CrossRef] [PubMed].
    [Google Scholar]
  2. Chou J. H., Cho N. T., Arun A. B., Young C. C., Chen W. M.. ( 2008;). Luteimonas aquatica sp. nov., isolated from fresh water from Southern Taiwan. Int J Syst Evol Microbiol 58: 2051–2055 [CrossRef] [PubMed].
    [Google Scholar]
  3. Christensen H., Angen O., Mutters R., Olsen J. E., Bisgaard M.. ( 2000;). DNA-DNA hybridization determined in micro-wells using covalent attachment of DNA. Int J Syst Evol Microbiol 50: 1095–1102 [CrossRef] [PubMed].
    [Google Scholar]
  4. Collins M. D., Jones D.. ( 1980;). Lipids in the classification and identification of coryneform bacteria containing peptidoglycan based on 2, 4-diaminobutyric acid. J Appl Bacteriol 48: 459–470 [CrossRef].
    [Google Scholar]
  5. Collins M. D., Pirouz T., Goodfellow M., Minnikin D. E.. ( 1977;). Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 100: 221–230 [CrossRef] [PubMed].
    [Google Scholar]
  6. Ezaki T., Hashimoto Y., Yabuuchi E.. ( 1989;). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39: 224–229 [CrossRef].
    [Google Scholar]
  7. Fan X., Yu T., Li Z., Zhang X. H.. ( 2014;). Luteimonas abyssi sp. nov., isolated from deep-sea sediment. Int J Syst Evol Microbiol 64: 668–674 [CrossRef] [PubMed].
    [Google Scholar]
  8. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17: 368–376 [CrossRef] [PubMed].
    [Google Scholar]
  9. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791 [CrossRef].
    [Google Scholar]
  10. Finkmann W., Altendorf K., Stackebrandt E., Lipski A.. ( 2000;). Characterization of N2O-producing Xanthomonas-like isolates from biofilters as Stenotrophomonas nitritireducens sp. nov., Luteimonas mephitis gen. nov., sp. nov. and Pseudoxanthomonas broegbernensis gen. nov., sp. nov. Int J Syst Evol Microbiol 50: 273–282 [CrossRef] [PubMed].
    [Google Scholar]
  11. Fitch W. M.. ( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20: 406–416 [CrossRef].
    [Google Scholar]
  12. Gonzalez C., Gutierrez C., Ramirez C.. ( 1978;). Halobacterium vallismortis sp. nov.: an amylolytic and carbohydrate-metabolizing, extremely halophilic bacterium. Can J Microbiol 24: 710–715 [CrossRef] [PubMed].
    [Google Scholar]
  13. He L., Li W., Huang Y., Wang L., Liu Z., Lanoot B., Vancanneyt M., Swings J.. ( 2005;). Streptomyces jietaisiensis sp. nov., isolated from soil in northern China. Int J Syst Evol Microbiol 55: 1939–1944 [CrossRef] [PubMed].
    [Google Scholar]
  14. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H., other authors. ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62: 716–721 [CrossRef] [PubMed].
    [Google Scholar]
  15. Kimura M.. ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16: 111–120 [CrossRef] [PubMed].
    [Google Scholar]
  16. Kovacs N.. ( 1956;). Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature 178: 703–704 [CrossRef] [PubMed].
    [Google Scholar]
  17. Kroppenstedt R. M.. ( 1982;). Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded ion exchanger as stationary phases. J Liq Chromatogr 5: 2359–2367 [CrossRef].
    [Google Scholar]
  18. Li W. J., Xu P., Schumann P., Zhang Y. Q., Pukall R., Xu L. H., Stackebrandt E., Jiang C. L.. ( 2007;). Georgenia ruanii sp. nov., a novel actinobacterium isolated from forest soil in Yunnan (China), and emended description of the genus Georgenia. Int J Syst Evol Microbiol 57: 1424–1428 [CrossRef] [PubMed].
    [Google Scholar]
  19. Mesbah M., Premachandran U., Whitman W. B.. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39: 159–167 [CrossRef].
    [Google Scholar]
  20. Minnikin D. E., Collins M. D., Goodfellow M.. ( 1979;). Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. J Appl Bacteriol 47: 87–95 [CrossRef].
    [Google Scholar]
  21. Park Y. J., Park M. S., Lee S. H., Park W., Lee K., Jeon C. O.. ( 2011;). Luteimonas lutimaris sp. nov., isolated from a tidal flat. Int J Syst Evol Microbiol 61: 2729–2733 [CrossRef] [PubMed].
    [Google Scholar]
  22. Roh S. W., Kim K. H., Nam Y. D., Chang H. W., Kim M. S., Yoon J. H., Oh H. M., Bae J. W.. ( 2008;). Luteimonas aestuarii sp. nov., isolated from tidal flat sediment. J Microbiol 46: 525–529 [CrossRef] [PubMed].
    [Google Scholar]
  23. Romanenko L. A., Tanaka N., Svetashev V. I., Kurilenko V. V., Mikhailov V. V.. ( 2013;). Luteimonas vadosa sp. nov., isolated from seashore sediment. Int J Syst Evol Microbiol 63: 1261–1266 [CrossRef] [PubMed].
    [Google Scholar]
  24. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425 [PubMed].
    [Google Scholar]
  25. Sasser M.. ( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids MIDI Technical Note 101 Newark, DE: MIDI Inc;.
    [Google Scholar]
  26. Sun Z. B., Zhang H., Yuan X. F., Wang Y. X., Feng D. M., Wang Y. H., Feng Y. J.. ( 2012;). Luteimonas cucumeris sp. nov., isolated a from cucumber leaf. Int J Syst Evol Microbiol 62: 2916–2920 [CrossRef] [PubMed].
    [Google Scholar]
  27. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28: 2731–2739 [CrossRef] [PubMed].
    [Google Scholar]
  28. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25: 4876–4882 [CrossRef] [PubMed].
    [Google Scholar]
  29. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D, Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C, Murray R. G. E, other authors. ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37: 463–464 [CrossRef].
    [Google Scholar]
  30. Wu G., Liu Y., Li Q., Du H., You J., Li H., Ke C., Zhang X., Yu J., Zhao T.. ( 2013;). Luteimonas huabeiensis sp. nov., isolated from stratum water. Int J Syst Evol Microbiol 63: 3352–3357 [CrossRef] [PubMed].
    [Google Scholar]
  31. Xin Y., Cao X., Wu P., Xue S.. ( 2014;). Luteimonas dalianensis sp. nov., an obligate marine bacterium isolated from seawater. J Microbiol 52: 729–733 [CrossRef] [PubMed].
    [Google Scholar]
  32. Xu P., Li W. J., Tang S. K., Zhang Y. Q., Chen G. Z., Chen H. H., Xu L. H., Jiang C. L.. ( 2005;). Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family ‘Oxalobacteraceae’ isolated from China. Int J Syst Evol Microbiol 55: 1149–1153 [CrossRef] [PubMed].
    [Google Scholar]
  33. Young C. C., Kämpfer P., Chen W. M., Yen W. S., Arun A. B., Lai W. A., Shen F. T., Rekha P. D., Lin K. Y., Chou J. H.. ( 2007;). Luteimonas composti sp. nov., a moderately thermophilic bacterium isolated from food waste. Int J Syst Evol Microbiol 57: 741–744 [CrossRef] [PubMed].
    [Google Scholar]
  34. Zhang D. C., Liu H. C., Xin Y. H., Zhou Y. G., Schinner F., Margesin R.. ( 2010;). Luteimonas terricola sp. nov., a psychrophilic bacterium isolated from soil. Int J Syst Evol Microbiol 60: 1581–1584 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000816
Loading
/content/journal/ijsem/10.1099/ijsem.0.000816
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error