1887

Abstract

Bacterial strains SBSr002 and SBSr003 were isolated in 2007 from dried soil samples containing decaying plant material. The organisms were recognized as myxobacteria by growth-stage characteristics, forming swarming colonies and fruiting bodies on agar and on filter paper. These strains were unusual for their ring-like or halo colony appearance in an agar. Both isolates were characterized as bacteriolytic, non-cellulolytic, mesophilic, aerobic and chemoheterotrophic and showed resistance to various antibiotics. GC-MS analysis of their cellular fatty acids revealed rather large quantities of docosahexaenoic acid, and they also both contained eicosapentaenoic acid, arachidonic acid and docosapentaenoic acid. Strain SBSr003 was previously identified as the producer organism of a novel class of potent antiviral metabolites that were called aetheramides. The G+C content of the genomic DNA was 68.0–68.9 mol%. Phylogenetic analysis revealed that both strains belong within the family , suborder , order . Their 16S rRNA gene sequences showed the highest similarity (97–99 %) to sequences derived from clones of uncultured bacteria, 95–96 % similarity to and and 94 % similarity to . The results of a polyphasic taxonomic characterization suggested that strains SBSr002 and SBSr003 represent two distinct species of a novel genus, gen. nov., for which the names sp. nov. (type strain SBSr002 = DSM 24601 = NCCB 100377) and sp. nov. (type strain SBSr003 = DSM 24628 = NCCB 100378) are proposed. The type species of is .

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000813
2016-02-01
2019-12-09
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/2/928.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000813&mimeType=html&fmt=ahah

References

  1. Allen E. E., Bartlett D. H.. ( 2002;). Structure and regulation of the omega-3 polyunsaturated fatty acid synthase genes from the deep-sea bacterium Photobacterium profundum strain SS9. Microbiology 148: 1903–1913 [CrossRef] [PubMed].
    [Google Scholar]
  2. Dawid W.. ( 2000;). Biology and global distribution of myxobacteria in soils. FEMS Microbiol Rev 24: 403–427 [CrossRef] [PubMed].
    [Google Scholar]
  3. Drummond A. J., Ashton B., Buxton S., Cheung M., Heled J., Kearse M., Moir R., Stones-Havas S., Sturrock S., other authors. ( 2010;). Geneious Pro 5.0.2.http://www.geneious.com.
    [Google Scholar]
  4. Edgar R. C.. ( 2004;). muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32: 1792–1797 [CrossRef] [PubMed].
    [Google Scholar]
  5. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791 [CrossRef].
    [Google Scholar]
  6. Garcia R., Müller R.. ( 2014a;). The family Myxococcaceae. . In The Prokaryotes, 4th edn.., vol. 10, pp. 191–212. Edited by Rosenberg E., DeLong E. F., Lory S., Stackebrandt E., Thompson F.. Heidelberg:: Springer;. [CrossRef]
    [Google Scholar]
  7. Garcia R., Müller R.. ( 2014b;). The family Polyangiaceae. . In The Prokaryotes, 4th edn.., vol. 10, pp. 247–279. Edited by Rosenberg E., DeLong E. F., Lory S., Stackebrandt E., Thompson F.. Heidelberg:: Springer;. [CrossRef]
    [Google Scholar]
  8. Garcia R. O., Krug D., Müller R.. ( 2009a;). Chapter 3. Discovering natural products from myxobacteria with emphasis on rare producer strains in combination with improved analytical methods. Methods Enzymol 458: 59–91 [CrossRef] [PubMed].
    [Google Scholar]
  9. Garcia R. O., Reichenbach H., Ring M. W., Müller R.. ( 2009b;). Phaselicystis flava gen. nov., sp. nov., an arachidonic acid-containing soil myxobacterium, and the description of Phaselicystidaceae fam. nov. Int J Syst Evol Microbiol 59: 1524–1530 [CrossRef] [PubMed].
    [Google Scholar]
  10. Garcia R., Gerth K., Stadler M., Dogma I. J. Jr., Müller R.. ( 2010;). Expanded phylogeny of myxobacteria and evidence for cultivation of the ‘unculturables’. Mol Phylogenet Evol 57: 878–887 [CrossRef] [PubMed].
    [Google Scholar]
  11. Garcia R., Pistorius D., Stadler M., Müller R.. ( 2011;). Fatty acid-related phylogeny of myxobacteria as an approach to discover polyunsaturated omega-3/6 fatty acids. J Bacteriol 193: 1930–1942 [CrossRef] [PubMed].
    [Google Scholar]
  12. Garcia R., Gemperlein K., Müller R.. ( 2014;). Minicystis rosea gen. nov., sp. nov., a polyunsaturated fatty acid-rich and steroid-producing soil myxobacterium. Int J Syst Evol Microbiol 64: 3733–3742 [CrossRef] [PubMed].
    [Google Scholar]
  13. Gemperlein K., Rachid S., Garcia R. O., Wenzel S. C., Müller R.. ( 2014;). Polyunsaturated fatty acid biosynthesis in myxobacteria: different PUFA synthases and their product diversity. Chem Sci (Camb) 5: 1733–1741 [CrossRef].
    [Google Scholar]
  14. Gerth K., Trowitzsch W., Piehl G., Schultze R., Lehmann J.. ( 1984;). Inexpensive media for mass cultivation of myxobacteria. Appl Microbiol Biotechnol 19: 23–28 [CrossRef].
    [Google Scholar]
  15. Hauvermale A., Kuner J., Rosenzweig B., Guerra D., Diltz S., Metz J. G.. ( 2006;). Fatty acid production in Schizochytrium sp.: involvement of a polyunsaturated fatty acid synthase and a type I fatty acid synthase. Lipids 41: 739–747 [CrossRef] [PubMed].
    [Google Scholar]
  16. Iizuka T., Tokura M., Jojima Y., Hiraishi A., Yamanaka S., Fudou R.. ( 2006;). Enrichment and phylogenetic analysis of moderately thermophilic myxobacteria from hot springs in Japan. Microbes Environ 21: 189–199 [CrossRef].
    [Google Scholar]
  17. Jukes T. H., Cantor C. R.. ( 1969;). Evolution of protein molecules. . In Mammalian Protein Metabolism, vol. 3, pp. 21–132. Edited by Munro H. N.. New York:: Academic Press;. [CrossRef]
    [Google Scholar]
  18. Li G., Shimelis O., Zhou X., Giese R. W.. ( 2003;). Scaled-down nuclease P1 for scaled-up DNA digestion. Biotechniques 34: 908–909 [PubMed].
    [Google Scholar]
  19. McCurdy H. D.. ( 1969;). Studies on the taxonomy of the Myxobacterales. I. Record of Canadian isolates and survey of methods. Can J Microbiol 15: 1453–1461 [CrossRef] [PubMed].
    [Google Scholar]
  20. Metz J. G., Roessler P., Facciotti D., Levering C., Dittrich F., Lassner M., Valentine R., Lardizabal K., Domergue F., other authors. ( 2001;). Production of polyunsaturated fatty acids by polyketide synthases in both prokaryotes and eukaryotes. Science 293: 290–293 [CrossRef] [PubMed].
    [Google Scholar]
  21. Morgulis A., Coulouris G., Raytselis Y., Madden T. L., Agarwala R., Schäffer A. A.. ( 2008;). Database indexing for production MegaBLAST searches. Bioinformatics 24: 1757–1764 [CrossRef] [PubMed].
    [Google Scholar]
  22. Morita N., Tanaka M., Okuyama H.. ( 2000;). Biosynthesis of fatty acids in the docosahexaenoic acid-producing bacterium Moritella marina strain MP-1. Biochem Soc Trans 28: 943–945 [CrossRef] [PubMed].
    [Google Scholar]
  23. Plaza A., Müller R.. ( 2014;). Myxobacteria: chemical diversity and screening strategies. . In Natural Products: Discourse, Diversity and Design, pp. 103–124. Edited by Osbourn A., Goss R. J., Carter G. T.. Hoboken, NJ:: Wiley;. [CrossRef]
    [Google Scholar]
  24. Plaza A., Garcia R., Bifulco G., Martinez J. P., Hüttel S., Sasse F., Meyerhans A., Stadler M., Müller R.. ( 2012;). Aetheramides A and B, potent HIV-inhibitory depsipeptides from a myxobacterium of the new genus Aetherobacter. Org Lett 14: 2854–2857 [CrossRef] [PubMed].
    [Google Scholar]
  25. Reichenbach H., Dworkin M.. ( 1992;). The myxobacteria. . In The Prokaryotes, 2nd edn.., pp. 3416–3487. Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K. H.. New York:: Springer;. [CrossRef]
    [Google Scholar]
  26. Reichenbach H., Lang E., Schumann P., Spröer C.. ( 2006;). Byssovorax cruenta gen. nov., sp. nov., nom. rev., a cellulose-degrading myxobacterium: rediscovery of ‘Myxococcus cruentus’ Thaxter 1897. Int J Syst Evol Microbiol 56: 2357–2363 [CrossRef] [PubMed].
    [Google Scholar]
  27. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425 [PubMed].
    [Google Scholar]
  28. Shimelis O., Giese R. W.. ( 2006;). Nuclease P1 digestion/high-performance liquid chromatography, a practical method for DNA quantitation. J Chromatogr A 1117: 132–136 [CrossRef] [PubMed].
    [Google Scholar]
  29. Shimkets L. J., Dworkin M., Reichenbach H.. ( 2006;). The myxobacteria. . In The Prokaryotes, 3rd edn.vol. 7, pp. 31–115. Edited by Dworkin M., Falkow S., Rosenberg E., Schleifer K. H., Stackebrandt E.. New York:: Springer;. [CrossRef]
    [Google Scholar]
  30. Stadler M., Roemer E., Müller R., Garcia R. O., Pistorius D., Brachmann A.. ( 2010;). Production of omega-3 fatty acids by myxobacteria International patent WO2010/063451 A2.
    [Google Scholar]
  31. Weissman K. J., Müller R.. ( 2010;). Myxobacterial secondary metabolites: bioactivities and modes-of-action. Nat Prod Rep 27: 1276–1295 [CrossRef] [PubMed].
    [Google Scholar]
  32. Yazawa K.. ( 1996;). Production of eicosapentaenoic acid from marine bacteria. Lipids 31: (Suppl.), S297–S300 [CrossRef] [PubMed].
    [Google Scholar]
  33. Zhang Z., Schwartz S., Wagner L., Miller W.. ( 2000;). A greedy algorithm for aligning DNA sequences. J Comput Biol 7: 203–214 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000813
Loading
/content/journal/ijsem/10.1099/ijsem.0.000813
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error