1887

Abstract

A novel aerobic bacterium, designated strain LAM0050, was isolated from a biogas slurry sample, which had been enriched with diesel oil for 30 days. Cells of strain LAM0050 were gram-stain-negative, non-motile, non-spore-forming and coccoid-shaped. The optimal temperature and pH for growth were 30–35 °C and 8.5, respectively. The strain did not require NaCl for growth, but tolerated up to 5.3 % (w/v) NaCl. Phylogenetic analysis of 16S rRNA gene sequences revealed that strain LAM0050 was a member of the genus , and was most closely related to KCTC 23732, CCUG 45225, DSM 17095 and DSM 17166, with 98.1, 96.6, 96.6 and 96.3 % sequence similarity, respectively. The DNA–DNA hybridization relatedness between strain LAM0050 and KCTC 23732 was 41.7 ± 2.4 %. The genomic DNA G+C content was 51.2 mol%, as determined by the method. The major fatty acids of strain LAM0050 were C, C cyclo, summed feature 3 (Cω7 and/or Cω6) and summed feature 8 (Cω7 and/or Cω6). The predominant ubiquinone was Q-8. The main polar lipids were diphosphatidyglycerol, phosphatidylethanolamine, phosphatidylmethylethanolamine and four unidentified phospholipids. Based on the phenotypic and genotypic properties, strain LAM0050 is suggested to represent a novel species of the genus , for which the name sp. nov., is proposed, the type strain is LAM0050 ( = ACCC 06485 = JCM 30465).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000811
2016-02-01
2020-09-26
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/2/906.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000811&mimeType=html&fmt=ahah

References

  1. Coenye T., Vanlaere E., Samyn E., Falsen E., Larsson P., Vandamme P.. 2005; Advenella incenata gen. nov., sp. nov., a novel member of the Alcaligenaceae, isolated from various clinical samples. Int J Syst Evol Microbiol55:251–256 [CrossRef][PubMed]
    [Google Scholar]
  2. De Ley J., Cattoir H., Reynaerts A.. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem12:133–142 [CrossRef][PubMed]
    [Google Scholar]
  3. Fang M. X., Zhang W. W., Zhang Y. Z., Tan H. Q., Zhang X. Q., Wu M., Zhu X. F.. 2012; Brassicibacter mesophilus gen. nov., sp. nov., a strictly anaerobic bacterium isolated from food industry wastewater. Int J Syst Evol Microbiol62:3018–3023 [CrossRef][PubMed]
    [Google Scholar]
  4. Felsenstein J.. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  5. Felsenstein J.. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution39:783–791 [CrossRef]
    [Google Scholar]
  6. Fitch W. M.. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool20:406–416 [CrossRef]
    [Google Scholar]
  7. Ghosh W., Bagchi A., Mandal S., Dam B., Roy P.. 2005; Tetrathiobacter kashmirensis gen. nov., sp. nov., a novel mesophilic, neutrophilic, tetrathionate-oxidizing, facultatively chemolithotrophic betaproteobacterium isolated from soil from a temperate orchard in Jammu and Kashmir, India. Int J Syst Evol Microbiol55:1779–1787 [CrossRef][PubMed]
    [Google Scholar]
  8. Gibello A., Vela A. I., Martín M., Barra-Caracciolo A., Grenni P., Fernández-Garayzábal J. F.. 2009; Reclassification of the members of the genus Tetrathiobacter Ghosh et al. 2005 to the genus Advenella Coenye et al. 2005. Int J Syst Evol Microbiol59:1914–1918 [CrossRef][PubMed]
    [Google Scholar]
  9. Kates M.. 1986; Techniques of Lipidology, 2nd edn. Amsterdam: Elsevier;
    [Google Scholar]
  10. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H., other authors. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  11. Komagata K., Suzuki K.. 1987; Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol19:161–207 [CrossRef]
    [Google Scholar]
  12. Marmur J.. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol3:208–218 [CrossRef]
    [Google Scholar]
  13. Marmur J., Doty P.. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol5:109–118 [CrossRef][PubMed]
    [Google Scholar]
  14. Matsuoka M., Park S., An S. Y., Miyahara M., Kim S. W., Kamino K., Fushinobu S., Yokota A., Wakagi T., Shoun H.. 2012; Advenella faeciporci sp. nov., a nitrite-denitrifying bacterium isolated from nitrifying-denitrifying activated sludge collected from a laboratory-scale bioreactor treating piggery wastewater. Int J Syst Evol Microbiol62:2986–2990 [CrossRef][PubMed]
    [Google Scholar]
  15. Ruan Z., Wang Y., Song J., Jiang S., Wang H., Li Y., Zhao B., Jiang R., Zhao B.. 2014; Kurthia huakuii sp. nov., isolated from biogas slurry, and emended description of the genus Kurthia. Int J Syst Evol Microbiol64:518–521 [CrossRef][PubMed]
    [Google Scholar]
  16. Saitou N., Nei M.. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol4:406–425[PubMed]
    [Google Scholar]
  17. Sakamoto M., Suzuki M., Umeda M., Ishikawa I., Benno Y.. 2002; Reclassification of Bacteroides forsythus (Tanner et al. 1986) as Tannerella forsythensis corrig., gen. nov., comb. nov. Int J Syst Evol Microbiol52:841–849[PubMed]
    [Google Scholar]
  18. Shin N. R., Whon T. W., Roh S. W., Kim M. S., Kim Y. O., Bae J. W.. 2012; Oceanisphaera sediminis sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol62:1552–1557 [CrossRef][PubMed]
    [Google Scholar]
  19. Smibert R. M., Krieg N. R.. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology pp647–654Edited by Gerhare P., Murray R. G. E., Wood W. A., Krieg N. R.. Washington: American Society for Microbiology;
    [Google Scholar]
  20. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S.. 2013; mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  21. Thompson J. D., Higgins D. G., Gibson T. J.. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res22:4673–4680 [CrossRef][PubMed]
    [Google Scholar]
  22. Tittsler R. P., Sandholzer L. A.. 1936; The use of semi-solid agar for the detection of bacterial motility. J Bacteriol31:575–580[PubMed]
    [Google Scholar]
  23. Wübbeler J. H., Lütke-Eversloh T., Van Trappen S., Vandamme P., Steinbüchel A.. 2006; Tetrathiobacter mimigardefordensis sp. nov., isolated from compost, a betaproteobacterium capable of utilizing the organic disulfide 3,3′-dithiodipropionic acid. Int J Syst Evol Microbiol56:1305–1310 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000811
Loading
/content/journal/ijsem/10.1099/ijsem.0.000811
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error