1887

Abstract

The taxonomic position of five strains isolated from horse faeces, and which shared identical 16S rRNA gene sequences, were studied. Cells of all isolates are Gram-stain-negative, obligately aerobic and have a rod-shaped appearance. The strains show highest 16S rRNA gene sequence similarities to (98.3 %), (98.0 %), (97.9 %) and (97.9 %). Whole-genome sequencing of strain 114 and phylogeny reconstruction based on a core set of 1061 genes indicated that CIP 107468 was the closest relative among species of the genus for which whole genome sequences are available. The genomic DNA G+C content of strain 114 is 34.9 mol%, which is lower than any other value reported for the genus . The predominant polyamine is 1,3-diaminopropane, which is typical for the genus . The most abundant fatty acids are Cω7 and/or iso-C 2-OH (36 %) and C (28 %). The proportion of Cω9 (7 %) is distinctively low compared to most species of the genus. The major ubiquinone of strain 114 is Q-9. Microscopic studies revealed the presence of pili and the absence of flagella. The capability of all five strains to utilize -arabinose and gentisate as well as their lack of growth at temperatures of 41 °C and above provide sufficient criteria to distinguish the isolates from all species of the genus with validly published names. Based on these combined data, the five isolates represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is 114 ( = DSM 27228 = CCUG 65204).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000806
2016-02-01
2019-12-07
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/2/881.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000806&mimeType=html&fmt=ahah

References

  1. Abbas S. , Ahmed I. , Kudo T. , Iida T. , Ali G. M. , Fujiwara T. , Ohkuma M. . ( 2014;). Heavy metal-tolerant and psychrotolerant bacterium Acinetobacter pakistanensis sp. nov. isolated from a textile dyeing wastewater treatment pond. Pak J Agric Sci 51: 595–608.
    [Google Scholar]
  2. Altenburger P. , Kämpfer P. , Makristathis A. , Lubitz W. , Busse H.-J. . ( 1996;). Classification of bacteria isolated from a medieval wall painting. J Biotechnol 47: 39–52 [CrossRef].
    [Google Scholar]
  3. Álvarez-Pérez S. , Lievens B. , Jacquemyn H. , Herrera C. M. . ( 2013;). Acinetobacter nectaris sp. nov. and Acinetobacter boissieri sp. nov., isolated from floral nectar of wild Mediterranean insect-pollinated plants. Int J Syst Evol Microbiol 63: 1532–1539 [CrossRef] [PubMed].
    [Google Scholar]
  4. Anandham R. , Weon H. Y. , Kim S. J. , Kim Y. S. , Kim B. Y. , Kwon S. W. . ( 2010;). Acinetobacter brisouii sp. nov., isolated from a wetland in Korea. J Microbiol 48: 36–39 [CrossRef] [PubMed].
    [Google Scholar]
  5. Auling G. , Pilz F. , Busse H. J. , Karrasch S. , Streichan M. , Schön G. . ( 1991;). Analysis of the polyphosphate-accumulating microflora in phosphorus-eliminating, anaerobic-aerobic activated sludge systems by using diaminopropane as a biomarker for rapid estimation of Acinetobacter spp. Appl Environ Microbiol 57: 3585–3592 [PubMed].
    [Google Scholar]
  6. Bouvet P. J. M , Grimont P. A. D . ( 1986;). Taxonomy of the genus Acinetobacter with the recognition of Acinetobacter baumannii sp. nov., Acinetobacter haemolyticus sp. nov., Acinetobacter johnsonii sp. nov., and Acinetobacter junii sp. nov. and emended descriptions of Acinetobacter calcoaceticus and Acinetobacter lwoffii . Int J Syst Bacteriol 36: 228–240 [CrossRef].
    [Google Scholar]
  7. Busse H.-J. , Auling G. . ( 1988;). Polyamine pattern as a chemotaxonomic marker within the Proteobacteria . Syst Appl Microbiol 11: 1–8 [CrossRef].
    [Google Scholar]
  8. Busse H.-J. , Bunka S. , Hensel A. , Lubitz W. . ( 1997;). Discrimination of members of the family Pasteurellaceae based on polyamine patterns. Int J Syst Bacteriol 47: 698–708 [CrossRef].
    [Google Scholar]
  9. Cashion P. , Holder-Franklin M. A. , McCully J. , Franklin M. . ( 1977;). A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81: 461–466 [CrossRef] [PubMed].
    [Google Scholar]
  10. Choi J. Y. , Ko G. , Jheong W. , Huys G. , Seifert H. , Dijkshoorn L. , Ko K. S. . ( 2013;). Acinetobacter kookii sp. nov., isolated from soil. Int J Syst Evol Microbiol 63: 4402–4406 [CrossRef] [PubMed].
    [Google Scholar]
  11. De Ley J. , Cattoir H. , Reynaerts A. . ( 1970;). The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12: 133–142 [CrossRef] [PubMed].
    [Google Scholar]
  12. Hamana K. , Matsuzaki S. . ( 1992;). Diaminopropane occurs ubiquitously in Acinetobacter as the major polyamine. J Gen Appl Microbiol 38: 191–194 [CrossRef].
    [Google Scholar]
  13. Huss V. A. , Festl H. , Schleifer K. H. . ( 1983;). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4: 184–192 [CrossRef] [PubMed].
    [Google Scholar]
  14. Jukes T. H. , Cantor C. R. . ( 1969;). Evolution of protein molecules. . In Mammalian protein metabolism, vol. 3, pp. 21–132 . Edited by H. N. Munro. New York: Academic Press.[CrossRef]
    [Google Scholar]
  15. Kämpfer P. , Bark K. , Busse H.-J. , Auling G. , Dott W. . ( 1992;). Numerical and chemotaxonomy of polyphosphate accumulating Acinetobacter strains with high polyphosphate: AMP phosphotransferase (PPAT) activity. Syst Appl Microbiol 15: 409–419 [CrossRef].
    [Google Scholar]
  16. Kim P. S. , Shin N. R. , Kim J. Y. , Yun J. H. , Hyun D. W. , Bae J. W. . ( 2014;). Acinetobacter apis sp. nov., isolated from the intestinal tract of a honey bee, Apis mellifera . J Microbiol 52: 639–645 [CrossRef] [PubMed].
    [Google Scholar]
  17. Krizova L. , Maixnerova M. , Sedo O. , Nemec A. . ( 2015;). Acinetobacter albensis sp. nov., isolated from natural soil and water ecosystems. Int J Syst Evol Microbiol 65: 3905–3912 [CrossRef] [PubMed].
    [Google Scholar]
  18. Lee H. J. , Lee S. S. . ( 2010;). Acinetobacter kyonggiensis sp. nov., a β-glucosidase-producing bacterium, isolated from sewage treatment plant. J Microbiol 48: 754–759 [CrossRef] [PubMed].
    [Google Scholar]
  19. Lee J. S. , Lee K. C. , Kim K. K. , Hwang I. C. , Jang C. , Kim N. G. , Yeo W. H. , Kim B. S. , Yu Y. M. , Ahn J. S. . ( 2009;). Acinetobacter antiviralis sp. nov., from Tobacco plant roots. J Microbiol Biotechnol 19: 250–256 [PubMed].
    [Google Scholar]
  20. Li W. , Zhang D. , Huang X. , Qin W. . ( 2014;). Acinetobacter harbinensis sp. nov., isolated from river water. Int J Syst Evol Microbiol 64: 1507–1513 [CrossRef] [PubMed].
    [Google Scholar]
  21. Li Y. , Chang J. , Guo L. M. , Wang H. M. , Xie S. J. , Piao C. G. , He W. . ( 2015;) Description of Acinetobacter populi sp. nov. isolated from symptomatic bark of Populus × euramericana canker. Int J Syst Evol Microbiol (in press). [CrossRef]
    [Google Scholar]
  22. Malhotra J. , Anand S. , Jindal S. , Rajagopal R. , Lal R. . ( 2012;). Acinetobacter indicus sp. nov., isolated from a hexachlorocyclohexane dump site. Int J Syst Evol Microbiol 62: 2883–2890 [CrossRef] [PubMed].
    [Google Scholar]
  23. Meier-Kolthoff J. P. , Auch A. F. , Klenk H. P. , Göker M. . ( 2013;). Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 14: 60 [CrossRef] [PubMed].
    [Google Scholar]
  24. Nemec A. , Musílek M. , Maixnerová M. , De Baere T. , van der Reijden T. J. , Vaneechoutte M. , Dijkshoorn L. . ( 2009;). Acinetobacter beijerinckii sp. nov. and Acinetobacter gyllenbergii sp. nov., haemolytic organisms isolated from humans. Int J Syst Evol Microbiol 59: 118–124 [CrossRef] [PubMed].
    [Google Scholar]
  25. Peleg A. Y. , Jara S. , Monga D. , Eliopoulos G. M. , Moellering R.C., Jr. , Mylonakis E. . ( 2009;). Galleria mellonella as a model system to study Acinetobacter baumannii pathogenesis and therapeutics. Antimicrob Agents Chemother 53: 2605–2609 [CrossRef] [PubMed].
    [Google Scholar]
  26. Pruesse E. , Quast C. , Knittel K. , Fuchs B. M. , Ludwig W. , Peplies J. , Glockner F. O. . ( 2007;). SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 35: 7188–7196.[CrossRef]
    [Google Scholar]
  27. Rafei R. , Hamze M. , Pailhoriès H. , Eveillard M. , Marsollier L. , Joly-Guillou M. L. , Dabboussi F. , Kempf M. . ( 2015;). Extrahuman epidemiology of Acinetobacter baumannii in Lebanon. Appl Environ Microbiol 81: 2359–2367 [CrossRef] [PubMed].
    [Google Scholar]
  28. Rodriguez-R L. M. , Konstantinidis K. T. . ( 2014;). Bypassing cultivation to identify bacterial species. Microbe 9: 111–118.
    [Google Scholar]
  29. Smet A. , Cools P. , Krizova L. , Maixnerova M. , Sedo O. , Haesebrouck F. , Kempf M. , Nemec A. , Vaneechoutte M. . ( 2014;). Acinetobacter gandensis sp. nov. isolated from horse and cattle. Int J Syst Evol Microbiol 64: 4007–4015 [CrossRef] [PubMed].
    [Google Scholar]
  30. Stackebrandt E. , Goebel B. M. . ( 1994;). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44: 846–849 [CrossRef].
    [Google Scholar]
  31. Stolz A. , Busse H. J. , Kämpfer P. . ( 2007;). Pseudomonas knackmussii sp. nov. Int J Syst Evol Microbiol 57: 572–576 [CrossRef] [PubMed].
    [Google Scholar]
  32. Tindall B. . ( 1990a;). A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13: 128–130 [CrossRef].
    [Google Scholar]
  33. Tindall B. . ( 1990b;). Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 66: 199–202 [CrossRef].
    [Google Scholar]
  34. Touchon M. , Cury J. , Yoon E. J. , Krizova L. , Cerqueira G. C. , Murphy C. , Feldgarden M. , Wortman J. , Clermont D. , other authors . ( 2014;). The genomic diversification of the whole Acinetobacter genus: origins, mechanisms, and consequences. Genome Biol Evol 6: 2866–2882 [CrossRef] [PubMed].
    [Google Scholar]
  35. Turton J. F. , Woodford N. , Glover J. , Yarde S. , Kaufmann M. E. , Pitt T. L. . ( 2006;). Identification of Acinetobacter baumannii by detection of the bla OXA-51-like carbapenemase gene intrinsic to this species. J Clin Microbiol 44: 2974–2976 [CrossRef] [PubMed].
    [Google Scholar]
  36. Vaz-Moreira I. , Novo A. , Hantsis-Zacharov E. , Lopes A. R. , Gomila M. , Nunes O. C. , Manaia C. M. , Halpern M. . ( 2011;). Acinetobacter rudis sp. nov., isolated from raw milk and raw wastewater. Int J Syst Evol Microbiol 61: 2837–2843 [CrossRef] [PubMed].
    [Google Scholar]
  37. Wayne L. G. , Brenner D. J. , Colwell R. R. , Grimont P. A. D , Kandler O. , Krichevsky M. I. , Moore L. H. , Moore W. E. C , Murray R. G. E , other authors . ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37: 463–464 [CrossRef].
    [Google Scholar]
  38. Yoon J. H. , Kim I. G. , Oh T. K. . ( 2007;). Acinetobacter marinus sp. nov. and Acinetobacter seohaensis sp. nov., isolated from sea water of the Yellow Sea in Korea. J Microbiol Biotechnol 17: 1743–1750 [PubMed].
    [Google Scholar]
  39. Ziemke F. , Brettar I. , Höfle M. . ( 1997;). Stability and diversity of the genetic structure of a Shewanella putrefaciens population in the water column of the central Baltic. Aquat Microb Ecol 13: 63–74 [CrossRef].
    [Google Scholar]
  40. Ziesché K. , Reissbrodt R. , Rische H. . ( 1985;). A bile-chrysoidine-glycerol culture medium and its use in the diagnosis of gram-negative aerobic bacteria, especially Enterobacteriaceae . Z Gesamte Hyg 31: 516–518.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000806
Loading
/content/journal/ijsem/10.1099/ijsem.0.000806
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error