1887

Abstract

A Gram-stain-negative, non-pigmented, non-spore-forming, non-motile, strictly aerobic bacterial strain, designated CAU 1038, was isolated from a sea sand sample in Modo, Republic of Korea, and its taxonomic position was examined using a polyphasic approach. Cells of strain CAU 1038 grew optimally at 30 °C, pH 7.5 in 2 % (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain CAU 1038 formed a distinct lineage within the class as a separate deep branch, with 95.2 % or lower sequence similarity to representatives of the genera , and , and 92.3 % or lower with , and . The major cellular fatty acids of strain CAU 1038 were C, Cω7 and Cω7c. The polar lipid pattern of the isolate consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, an unidentified aminolipid and two unidentified lipids. The strain contained lipoquinone (Q-8) as the sole respiratory quinone. The G+C content of the genomic DNA was 65 mol%. On the basis of phenotypic and chemotaxonomic data, and phylogenetic inference, strain CAU 1038 represents a novel species of a new genus in the family , for which the name gen. nov., sp. nov. is proposed. The type strain of the type species is CAU 1038 ( = KCTC 42300 = NBRC 110727).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000803
2016-02-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/2/856.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000803&mimeType=html&fmt=ahah

References

  1. Bowman J. P.. ( 2000;). Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov.. Int J Syst Evol Microbiol 50: 1861–1868 [CrossRef] [PubMed].
    [Google Scholar]
  2. Cappuccino J. G., Sherman N.. ( 2002;). Microbiology: a Laboratory Manual, 6th edn. Menlo Park, CA: Benjamin/Cummings;.
    [Google Scholar]
  3. Csotonyi J. T., Stackebrandt E., Swiderski J., Schumann P., Yurkov V.. ( 2011;). Chromocurvus halotolerans gen. nov., sp. nov., a gammaproteobacterial obligately aerobic anoxygenic phototroph, isolated from a Canadian hypersaline spring. Arch Microbiol 193: 573–582 [CrossRef] [PubMed].
    [Google Scholar]
  4. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17: 368–376 [CrossRef] [PubMed].
    [Google Scholar]
  5. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791 [CrossRef].
    [Google Scholar]
  6. Felsenstein J.. ( 1989;). phylip – phylogeny inference package (version 3.2). Cladistics 5: 164–166.
    [Google Scholar]
  7. Fitch W. M.. ( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20: 406–416 [CrossRef].
    [Google Scholar]
  8. Fitch W. M., Margoliash E.. ( 1967;). Construction of phylogenetic trees. Science 155: 279–284 [CrossRef] [PubMed].
    [Google Scholar]
  9. Gordon R. E., Mihm J. M.. ( 1962;). Identification of Nocardia caviae (Erikson) nov. comb. Ann N Y Acad Sci 98: 628–636 [CrossRef].
    [Google Scholar]
  10. Jukes T. H., Cantor C. R.. ( 1969;). Evolution of protein molecules. . In Mammalian Protein Metabolism, pp. 21–132. Edited by Munro H. H.. New York: Academic Press;. [CrossRef]
    [Google Scholar]
  11. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H., other authors. ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62: 716–721 [CrossRef] [PubMed].
    [Google Scholar]
  12. Komagata K., Suzuki K.. ( 1987;). Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19: 161–207 [CrossRef].
    [Google Scholar]
  13. Lane D. J.. ( 1991;). 16S/23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by Stackebrandt E., Goodfellow M.. Chichester: Wiley;.
    [Google Scholar]
  14. Larkin M. A., Blackshields G., Brown N. P., Chenna R., McGettigan P. A., McWilliam H., Valentin F., Wallace I. M., Wilm A., other authors. ( 2007;). clustal w clustal_x version 2.0. Bioinformatics 23: 2947–2948 [CrossRef] [PubMed].
    [Google Scholar]
  15. Leifson E.. ( 1963;). Determination of carbohydrate metabolism of marine bacteria. J Bacteriol 85: 1183–1184 [PubMed].
    [Google Scholar]
  16. Marmur J.. ( 1961;). A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3: 208–218 [CrossRef].
    [Google Scholar]
  17. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H.. ( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2: 233–241 [CrossRef].
    [Google Scholar]
  18. Nam S. W., Kim W., Chun J., Goodfellow M.. ( 2004;). Tsukamurella pseudospumae sp. nov., a novel actinomycete isolated from activated sludge foam. Int J Syst Evol Microbiol 54: 1209–1212 [CrossRef] [PubMed].
    [Google Scholar]
  19. Park S., Yoshizawa S., Inomata K., Kogure K., Yokota A.. ( 2012;). Halioglobus japonicus gen. nov., sp. nov., and Halioglobus pacificus sp. nov., members of the class Gammaproteobacteria isolated from seawater. Int J Syst Evol Microbiol 62: 1784–1789 [CrossRef] [PubMed].
    [Google Scholar]
  20. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425 [PubMed].
    [Google Scholar]
  21. Spring S., Lünsdorf H., Fuchs B. M., Tindall B. J.. ( 2009;). The photosynthetic apparatus and its regulation in the aerobic gammaproteobacterium Congregibacter litoralis gen. nov., sp. nov. PLoS One 4: e4866 [CrossRef] [PubMed].
    [Google Scholar]
  22. Spring S., Riedel T., Spröer C., Yan S., Harder J., Fuchs B. M.. ( 2013;). Taxonomy and evolution of bacteriochlorophyll a-containing members of the OM60/NOR5 clade of marine gammaproteobacteria: description of Luminiphilus syltensis gen. nov., sp. nov., reclassification of Haliea rubra as Pseudohaliea rubra gen. nov., comb. nov., and emendation of Chromatocurvus halotolerans. BMC Microbiol 13: 118 [CrossRef] [PubMed].
    [Google Scholar]
  23. Spring S., Scheuner C., Göker M., Klenk H. P.. ( 2015;). A taxonomic framework for emerging groups of ecologically important marine gammaproteobacteria based on the reconstruction of evolutionary relationships using genome-scale data. Front Microbiol 6: 281 [CrossRef] [PubMed].
    [Google Scholar]
  24. Tamaoka J., Komagata K.. ( 1984;). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25: 125–128 [CrossRef].
    [Google Scholar]
  25. Urios L., Intertaglia L., Lesongeur F., Lebaron P.. ( 2008;). Haliea salexigens gen. nov., sp. nov., a member of the Gammaproteobacteria from the Mediterranean Sea. Int J Syst Evol Microbiol 58: 1233–1237 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000803
Loading
/content/journal/ijsem/10.1099/ijsem.0.000803
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error