1887

Abstract

A novel thermophilic, anaerobic, mixotrophic bacterium, designated strain MAG-PB1, was isolated from a shallow-water hydrothermal vent system in Palaeochori Bay off the coast of the island of Milos, Greece. The cells were Gram-negative, rugose, short rods, approximately 1.0 μm long and 0.5 μm wide. Strain MAG-PB1 grew at 30–70 °C (optimum 60 °C), 0–50 g NaCl l (optimum 15–20 g l) and pH 5.5–8.0 (optimum pH 6.0). Generation time under optimal conditions was 2.5 h. Optimal growth occurred under chemolithoautotrophic conditions with H as the energy source and CO as the carbon source. Fe(III), Mn(IV), arsenate and selenate were used as electron acceptors. Peptone, tryptone, Casamino acids, sucrose, yeast extract, -fructose, α--glucose and ( − )--arabinose also served as electron donors. No growth occurred in the presence of lactate or formate. The G+C content of the genomic DNA was 66.7 mol%. Phylogenetic analysis of the 16S rRNA gene sequence indicated that this organism is closely related to , the first species of a recently described genus in the . Based on the 16S rRNA gene phylogenetic analysis and on physiological, biochemical and structural characteristics, the strain was found to represent a novel species, for which the name sp. nov. is proposed. The type strain is MAG-PB1 ( = JCM 30394 = DSM 29363).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000798
2016-02-01
2020-02-26
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/2/830.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000798&mimeType=html&fmt=ahah

References

  1. Aguiar P., Beveridge T. J., Reysenbach A. L.. 2004; Sulfurihydrogenibium azorense, sp. nov., a thermophilic hydrogen-oxidizing microaerophile from terrestrial hot springs in the Azores. Int J Syst Evol Microbiol54:33–39 [CrossRef][PubMed]
    [Google Scholar]
  2. Akerman N. H., Price R. E., Pichler T., Amend J. P.. 2011; Energy sources for chemolithotrophs in an arsenic- and iron-rich shallow-sea hydrothermal system. Geobiology9:436–445 [CrossRef][PubMed]
    [Google Scholar]
  3. Cannone J. J., Subramanian S., Schnare M. N., Collett J. R., D'Souza L. M., Du Y., Feng B., Lin N., Madabusi L. V., other authors. 2002; The comparative RNA web (CRW) site: an online database of comparative sequence and structure information for ribosomal, intron, and other RNAs. BMC Bioinformatics3:2 [CrossRef][PubMed]
    [Google Scholar]
  4. Flynn T. M., O'Loughlin E. J., Mishra B., DiChristina T. J., Kemner K. M.. 2014; Sulfur-mediated electron shuttling during bacterial iron reduction. Science344:1039–1042 [CrossRef][PubMed]
    [Google Scholar]
  5. Gao H., Obraztova A., Stewart N., Popa R., Fredrickson J. K., Tiedje J. M., Nealson K. H., Zhou J.. 2006; Shewanella loihica sp. nov., isolated from iron-rich microbial mats in the Pacific Ocean. Int J Syst Evol Microbiol56:1911–1916 [CrossRef][PubMed]
    [Google Scholar]
  6. Gorlenko V., Tsapin A., Namsaraev Z., Teal T., Tourova T., Engler D., Mielke R., Nealson K.. 2004; Anaerobranca californiensis sp. nov., an anaerobic, alkalithermophilic, fermentative bacterium isolated from a hot spring on Mono Lake. Int J Syst Evol Microbiol54:739–743 [CrossRef][PubMed]
    [Google Scholar]
  7. Haouari O., Fardeau M. L., Cayol J. L., Casiot C., Elbaz-Poulichet F., Hamdi M., Joseph M., Ollivier B.. 2008; Desulfotomaculum hydrothermale sp. nov., a thermophilic sulfate-reducing bacterium isolated from a terrestrial Tunisian hot spring. Int J Syst Evol Microbiol58:2529–2535 [CrossRef][PubMed]
    [Google Scholar]
  8. Hirayama H., Sunamura M., Takai K., Nunoura T., Noguchi T., Oida H., Furushima Y., Yamamoto H., Oomori T., Horikoshi K.. 2007; Culture-dependent and -independent characterization of microbial communities associated with a shallow submarine hydrothermal system occurring within a coral reef off Taketomi Island, Japan. Appl Environ Microbiol73:7642–7656 [CrossRef][PubMed]
    [Google Scholar]
  9. Holden J. F., Adams M. W. W. 2003; Microbe-metal interactions in marine hydrothermal environments. Curr Opin Chem Biol7:160–165 [CrossRef][PubMed]
    [Google Scholar]
  10. Huelsenbeck J. P., Ronquist F.. 2001; MrBayes: Bayesian inference of phylogenetic trees. Bioinformatics17:754–755 [CrossRef][PubMed]
    [Google Scholar]
  11. Itoh T., Yamanoi K., Kudo T., Ohkuma M., Takashina T.. 2011; Aciditerrimonas ferrireducens gen. nov., sp. nov., an iron-reducing thermoacidophilic actinobacterium isolated from a solfataric field. Int J Syst Evol Microbiol61:1281–1285 [CrossRef][PubMed]
    [Google Scholar]
  12. Kashefi K., Holmes D. E., Baross J. A., Lovley D. R.. 2003; Thermophily in the Geobacteraceae: Geothermobacter ehrlichii gen. nov., sp. nov., a novel thermophilic member of the Geobacteraceae from the Bag City hydrothermal vent. Appl Environ Microbiol69:2985–2993 [CrossRef][PubMed]
    [Google Scholar]
  13. Kawaichi S., Ito N., Kamikawa R., Sugawara T., Yoshida T., Sako Y.. 2013; Ardenticatena maritima gen. nov., sp. nov., a ferric iron- and nitrate-reducing bacterium of the phylum ‘Chloroflexi’ isolated from an iron-rich coastal hydrothermal field, and description of Ardenticatenia classis nov. Int J Syst Evol Microbiol63:2992–3002 [CrossRef][PubMed]
    [Google Scholar]
  14. Labrenz M., Collins M. D., Lawson P. A., Tindall B. J., Braker G., Hirsch P.. 1998; Antarctobacter heliothermus gen. nov., sp. nov., a budding bacterium from hypersaline and heliothermal Ekho Lake. Int J Syst Bacteriol48:1363–1372 [CrossRef][PubMed]
    [Google Scholar]
  15. Liu S. V., Zhou J., Zhang C., Cole D. R., Gajdarziska-Josifovska M., Phelps T. J.. 1997; Thermophilic Fe(III)-reducing bacteria from the deep subsurface: the evolutionary implications. Science277:1106–1109 [CrossRef]
    [Google Scholar]
  16. Losey N. A., Stevenson B. S., Busse H.-J., Sinninghe Damsté J. S., Rijpstra W. I. C, Rudd S., Lawson P. A.. 2013; Thermoanaerobaculum aquaticum gen. nov., sp. nov., the first cultivated member of Acidobacteria subdivision 23, isolated from a hot spring. Int J Syst Evol Microbiol63:4149–4157 [CrossRef][PubMed]
    [Google Scholar]
  17. Mesbah M., Premachandran U., Whitman W.. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol39:159–167 [CrossRef]
    [Google Scholar]
  18. Meyer-Dombard D. R., Amend J. P.. 2014; Geochemistry and microbial ecology in alkaline hot springs of Ambitle Island, Papua New Guinea. Extremophiles18:763–778 [CrossRef][PubMed]
    [Google Scholar]
  19. Miroshnichenko M. L., Slobodkin A. I., Kostrikina N. A., L'Haridon S., Nercessian O., Spring S., Stackebrandt E., Bonch-Osmolovskaya E. A., Jeanthon C.. 2003; Deferribacter abyssi sp. nov., an anaerobic thermophile from deep-sea hydrothermal vents of the Mid-Atlantic Ridge. Int J Syst Evol Microbiol53:1637–1641 [CrossRef][PubMed]
    [Google Scholar]
  20. Nawrocki E. P., Kolbe D. L., Eddy S. R.. 2009; Infernal 1.0: inference of RNA alignments. Bioinformatics25:1335–1337 [CrossRef][PubMed]
    [Google Scholar]
  21. Price R. E., Savov I., Planer-Friedrich B., Bühring S. I., Amend J. P., Pichler T.. 2013; Processes influencing extreme As enrichment in shallow-sea hydrothermal fluids of Milos Island, Greece. Chem Geol348:15–26 [CrossRef]
    [Google Scholar]
  22. Richter K., Schicklberger M., Gescher J.. 2012; Dissimilatory reduction of extracellular electron acceptors in anaerobic respiration. Appl Environ Microbiol78:913–921 [CrossRef][PubMed]
    [Google Scholar]
  23. Sievert S. M., Brinkhoff T., Muyzer G., Ziebis W., Kuever. 1999; Spatial heterogeneity of bacterial populations along an environmental gradient at a shallow submarine hydrothermal vent near Milos Island (Greece). Appl Environ Microbiol65:3834–3842[PubMed]
    [Google Scholar]
  24. Sleat R., Mah R. A., Robinson R.. 1984; Isolation and characterization of an anaerobic, cellulolytic bacterium, Clostridium cellulovorans sp. nov. Appl Environ Microbiol48:88–93[PubMed]
    [Google Scholar]
  25. Slobodkin A. I.. 2005; Thermophilic microbial metal reduction. Microbiology (English translation of Mikrobiologiia)74:501–514
    [Google Scholar]
  26. Slobodkin A., Reysenbach A. L., Strutz N., Dreier M., Wiegel J.. 1997; Thermoterrabacterium ferrireducens gen. nov., sp. nov., a thermophilic anaerobic dissimilatory Fe(III)-reducing bacterium from a continental hot spring. Int J Syst Bacteriol47:541–547 [CrossRef][PubMed]
    [Google Scholar]
  27. Slobodkin A. I., Tourova T. P., Kuznetsov B. B., Kostrikina N. A., Chernyh N. A., Bonch-Osmolovskaya E. A.. 1999; Thermoanaerobacter siderophilus sp. nov., a novel dissimilatory Fe(III)-reducing, anaerobic, thermophilic bacterium. Int J Syst Bacteriol49:1471–1478 [CrossRef][PubMed]
    [Google Scholar]
  28. Slobodkin A., Campbell B., Cary S. C., Bonch-Osmolovskaya E., Jeanthon C.. 2001; Evidence for the presence of thermophilic Fe(III)-reducing microorganisms in deep-sea hydrothermal vents at 13° N (East Pacific Rise). FEMS Microbiol Ecol36:235–243[PubMed]
    [Google Scholar]
  29. Slobodkin A. I., Tourova T. P., Kostrikina N. A., Lysenko A. M., German K. E., Bonch-Osmolovskaya E. A., Birkeland N. K.. 2006; Tepidimicrobium ferriphilum gen. nov., sp. nov., a novel moderately thermophilic, Fe(III)-reducing bacterium of the order Clostridiales. Int J Syst Evol Microbiol56:369–372 [CrossRef][PubMed]
    [Google Scholar]
  30. Slobodkina G. B., Kolganova T. V., Chernyh N. A., Querellou J., Bonch-Osmolovskaya E. A., Slobodkin A. I.. 2009a; Deferribacter autotrophicus sp. nov., an iron(III)-reducing bacterium from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol59:1508–1512 [CrossRef][PubMed]
    [Google Scholar]
  31. Slobodkina G. B., Kolganova T. V., Querellou J., Bonch-Osmolovskaya E. A., Slobodkin A. I.. 2009b; Geoglobus acetivorans sp. nov., an iron(III)-reducing archaeon from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol59:2880–2883 [CrossRef][PubMed]
    [Google Scholar]
  32. Slobodkina G. B., Panteleeva A. N., Sokolova T. G., Bonch-Osmolovskaya E. A., Slobodkin A. I.. 2012a; Carboxydocella manganica sp. nov., a thermophilic, dissimilatory Mn(IV)- and Fe(III)-reducing bacterium from a Kamchatka hot spring. Int J Syst Evol Microbiol62:890–894 [CrossRef][PubMed]
    [Google Scholar]
  33. Slobodkina G. B., Reysenbach A. L., Panteleeva A. N., Kostrikina N. A., Wagner I. D., Bonch-Osmolovskaya E. A., Slobodkin A. I.. 2012b; Deferrisoma camini gen. nov., sp. nov., a moderately thermophilic, dissimilatory iron(III)-reducing bacterium from a deep-sea hydrothermal vent that forms a distinct phylogenetic branch in the Deltaproteobacteria. Int J Syst Evol Microbiol62:2463–2468 [CrossRef][PubMed]
    [Google Scholar]
  34. Sokolova T. G., González J. M., Kostrikina N. A., Chernyh N. A., Slepova T. V., Bonch-Osmolovskaya E. A., Robb F. T.. 2004; Thermosinus carboxydivorans gen. nov., sp. nov., a new anaerobic, thermophilic, carbon-monoxide-oxidizing, hydrogenogenic bacterium from a hot pool of Yellowstone National Park. Int J Syst Evol Microbiol54:2353–2359 [CrossRef][PubMed]
    [Google Scholar]
  35. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S.. 2013; mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  36. Tschech A., Schink B.. 1985; Fermentative degradation of resorcinol and resorcyclic acids. Arch Microbiol143:52–59 [CrossRef]
    [Google Scholar]
  37. Vargas M., Kashefi K., Blunt-Harris E. L., Lovley D. R.. 1998; Microbiological evidence for Fe(III) reduction on early Earth. Nature395:65–67 [CrossRef][PubMed]
    [Google Scholar]
  38. Vetriani C., Speck M. D., Ellor S. V., Lutz R. A., Starovoytov V.. 2004; Thermovibrio ammonificans sp. nov., a thermophilic, chemolithotrophic, nitrate-ammonifying bacterium from deep-sea hydrothermal vents. Int J Syst Evol Microbiol54:175–181 [CrossRef][PubMed]
    [Google Scholar]
  39. Voordeckers J. W., Starovoytov V., Vetriani C.. 2005; Caminibacter mediatlanticus sp. nov., a thermophilic, chemolithoautotrophic, nitrate-ammonifying bacterium isolated from a deep-sea hydrothermal vent on the Mid-Atlantic Ridge. Int J Syst Evol Microbiol55:773–779 [CrossRef][PubMed]
    [Google Scholar]
  40. Wolin E. A., Wolin M. J., Wolfe R. S.. 1963; Formation of methane by bacterial extracts. J Biol Chem238:2882–2886[PubMed]
    [Google Scholar]
  41. Yoneda Y., Yoshida T., Kawaichi S., Daifuku T., Takabe K., Sako Y.. 2012; Carboxydothermus pertinax sp. nov., a thermophilic, hydrogenogenic, Fe(III)-reducing, sulfur-reducing carboxydotrophic bacterium from an acidic hot spring. Int J Syst Evol Microbiol62:1692–1697 [CrossRef][PubMed]
    [Google Scholar]
  42. Yücel M., Sievert S., Vetriani C., Foustoukos D., Giovannelli D., Le Bris N.. 2013; Eco-geochemical dynamics of a shallow-water hydrothermal vent system at Milos Island, Aegean Sea (Eastern Mediterranean). Chem Geol356:11–20 [CrossRef]
    [Google Scholar]
  43. Zavarzina D. G., Tourova T. P., Kuznetsov B. B., Bonch-Osmolovskaya E. A., Slobodkin A. I.. 2002; Thermovenabulum ferriorganovorum gen. nov., sp. nov., a novel thermophilic, anaerobic, endospore-forming bacterium. Int J Syst Evol Microbiol52:1737–1743[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000798
Loading
/content/journal/ijsem/10.1099/ijsem.0.000798
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error