1887

Abstract

A novel Gram-stain-positive, aerobic, endospore-forming, and rod-shaped strain designated 694 was isolated from surface-sterilized root tissue of a maize planted in the Fangshan District of Beijing, People's Republic of China. A polyphasic taxonomic study was performed on the new isolate. On the basis of 16S rRNA gene sequence similarity studies, this isolate belongs to the genus . High levels of 16S rRNA gene sequence similarity were found between strain 694 and DSM 30034 (98.5 %) and (98.1 %), respectively. However, the DNA–DNA hybridization values between strain 694 and its close relatives 16970 and CGMCC 1.10223 were 30.0 % and 36.7 % respectively. The DNA G+C content of strain 694 was determined to be 46.9 mol%. The predominant respiratory quinone was identified as menaquinone-7 and the polar lipid profile was found to be composed of the major lipids diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. The major fatty acids were found to be anteiso-C (42.1 %), iso-C (18.4 %), iso-C (11.2 %) and C (12.1 %). The results of physiological and biochemical tests and minor differences in the fatty acid profiles allowed a clear phenotypic differentiation of strain 694 from the closely related species in the genus Strain 694 is concluded to represent a novel species within the genus , for which the name sp. nov. is proposed, with the type strain 694 ( = CGMCC 1.15286 = DSM 100762).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000795
2016-02-01
2020-11-24
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/2/807.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000795&mimeType=html&fmt=ahah

References

  1. Ash C., Priest F. G., Collins M. D.. 1993; Molecular identification of rRNA group 3 bacilli (Ash Farrow Wallbanks and Collins using a PCR probe test Proposal for the creation of a new genus Paenibacillus). Antonie van Leeuwenhoek64:253–260 [CrossRef][PubMed]
    [Google Scholar]
  2. Carro L., Flores-Félix J. D., Cerda-Castillo E., Ramírez-Bahena M. H., Igual J. M., Tejedor C., Velázquez E., Peix A.. 2013; Paenibacillus endophyticus sp. nov., isolated from nodules of Cicer arietinum . Int J Syst Evol Microbiol63:4433–4438 [CrossRef][PubMed]
    [Google Scholar]
  3. Carro L., Flores-Félix J. D., Ramírez-Bahena M. H., García-Fraile P., Martínez-Hidalgo P., Igual J. M., Tejedor C., Peix A., Velázquez E.. 2014; Paenibacillus lupini sp. nov., isolated from nodules of Lupinus albus. Int J Syst Evol Microbiol64:3028–3033 [CrossRef][PubMed]
    [Google Scholar]
  4. Collins M. D., Jones D.. 1980; Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2,4-diaminobutyric acid. J Appl Bacteriol48:459–470[CrossRef]
    [Google Scholar]
  5. Collins M. D., Pirouz T., Goodfellow M., Minnikin D. E.. 1977; Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol100:221–230 [CrossRef][PubMed]
    [Google Scholar]
  6. De Vos P., Ludwig W., Schleifer K.-H., Whitman W. B.. 2010; Paenibacillaceae fam. nov. In List of New Names and New Combinations Previously Effectively, but not Validly, Published, Validation List 132. Int J Syst Evol Microbiol60:469–472 [CrossRef]
    [Google Scholar]
  7. Felsenstein J.. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  8. Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R.. 1994; Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology;
    [Google Scholar]
  9. Hegazi N. A., Hamza A. M., Osman A., Ali S., Sedik M. Z., Fayez M.. 1998; Modified combined carbon N-deficient medium for isolation, enumeration and biomass production of diazotrophs. In Nitrogen Fixation with Nonlegumes pp247–253Edited by Kauser Malik A., Sajjad Mirza M.. Dordrecht: Kluwer Academic Publishers; [CrossRef]
    [Google Scholar]
  10. Kim O.-S., Cho Y.-J., Lee K., Yoon S.-H., Kim M., Na H., Park S.-C., Jeon Y. S., Lee J.-H., other authors. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  11. Kittiwongwattana C., Thawai C.. 2015; Paenibacillus lemnae sp. nov., an endophytic bacterium of duckweed (Lemna aequinoctialis). Int J Syst Evol Microbiol65:107–112 [CrossRef][PubMed]
    [Google Scholar]
  12. Kong B. H., Liu Q. F., Liu M., Liu Y., Liu L., Li C. L., Yu R., Li Y. H.. 2013; Paenibacillus typhae sp. nov., isolated from roots of Typha angustifolia L. Int J Syst Evol Microbiol63:1037–1044 [CrossRef][PubMed]
    [Google Scholar]
  13. Lai W. A., Hameed A., Lin S. Y., Hung M. H., Hsu Y. H., Liu Y. C., Shahina M., Shen F. T., Young C. C.. 2015; Paenibacillus medicaginis sp. nov. a chitinolytic endophyte isolated from the root nodule of alfalfa (Medicago sativa L.). Int J Syst Evol Microbiol [Epub ahead of print] [CrossRef]
    [Google Scholar]
  14. Lane D. J.. 1991; 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematic pp115–175Edited by Stackerandt E., Goodfellow M.. Chichester: Wiley;
    [Google Scholar]
  15. Lim J.-M., Jeon C. O., Park D.-J., Xu L.-H., Jiang C.-L., Kim C.-J.. 2006; Paenibacillus xinjiangensis sp. nov., isolated from Xinjiang province in China. Int J Syst Evol Microbiol56:2579–2582 [CrossRef][PubMed]
    [Google Scholar]
  16. Liu Y., Liu L., Qiu F., Schumann P., Shi Y., Zou Y., Zhang X., Song W.. 2010; Paenibacillus hunanensis sp. nov., isolated from rice seeds. Int J Syst Evol Microbiol60:1266–1270 [CrossRef][PubMed]
    [Google Scholar]
  17. Logan N. A., Berge O., Bishop A. H., Busse H. J., De Vos P., Fritze D., Heyndrickx M., Kämpfer P., Rabinovitch L., other authors. 2009; Proposed minimal standards for describing new taxa of aerobic, endospore-forming bacteria. Int J Syst Evol Microbiol59:2114–2121 [CrossRef][PubMed]
    [Google Scholar]
  18. Marmur J.. 1961; A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol3:208–218 [CrossRef]
    [Google Scholar]
  19. Marmur J., Doty P.. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol5:109–118 [CrossRef][PubMed]
    [Google Scholar]
  20. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H.. 1984; An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods2:233–241 [CrossRef]
    [Google Scholar]
  21. Reasoner D. J., Geldreich E. E.. 1985; A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol49:1–7[PubMed]
    [Google Scholar]
  22. Rzhetsky A., Nei M.. 1992; Statistical properties of the ordinary least-squares, generalized least-squares, and minimum-evolution methods of phylogenetic inference. J Mol Evol35:367–375 [CrossRef][PubMed]
    [Google Scholar]
  23. Rzhetsky A., Nei M.. 1993; Theoretical foundation of the minimum-evolution method of phylogenetic inference. Mol BiolE0:1073–1095[PubMed]
    [Google Scholar]
  24. Saitou N., Nei M.. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol4:406–425[PubMed]
    [Google Scholar]
  25. Sasser M.. 1990; Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101 Newark, DE: MIDI Inc;
    [Google Scholar]
  26. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S.. 2013; mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  27. Tang Q.-Y., Yang N., Wang J., Xie Y.-Q., Ren B., Zhou Y.-G., Gu M.-Y., May J., Li W.-J., other authors. 2011; Paenibacillus algorifonticola sp. nov., isolated from a cold spring. Int J Syst Evol Microbiol61:2167–2172[CrossRef]
    [Google Scholar]
  28. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res25:4876–4882 [CrossRef][PubMed]
    [Google Scholar]
  29. Valverde A., Fterich A., Mahdhi M., Ramírez-Bahena M.-H., Caviedes M. A., Mars M., Velázquez E., Rodriguez-Llorente I. D.. 2010; Paenibacillus prosopidis sp. nov., isolated from the nodules of Prosopis farcta . Int J Syst Evol Microbiol60:2182–2186 [CrossRef][PubMed]
    [Google Scholar]
  30. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D, Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C, Murray R. G. E, other authors. 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol37:463–464 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000795
Loading
/content/journal/ijsem/10.1099/ijsem.0.000795
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error