1887

Abstract

A Gram-stain-positive, spore-forming, motile, strictly aerobic, rod-shaped bacterium, designated strain L5, was isolated from soil of Tenglong cave, China. 16S rRNA gene sequence analysis showed that strain L5 was related most closely to MA001 (96.5 %) (the highest 16S rRNA gene sequence similarity), BT080 (96.4 %) and ZLD-8 (96.2 %). The DNA G+C content of strain L5 was 45.6 mol%. The major menaquinone was MK-7. The major fatty acids were iso-C, anteiso-C and iso-C, and the major polar lipids were diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. The diagnostic diamino acid in the cell-wall peptidoglycan was -diaminopimelic acid. In addition, strain L5 had different characteristics compared with the other strains such as pink colony colour, low growth temperature and low nutrient requirement. The results indicate that strain L5 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is L5 ( = KCTC 33637 = CCTCC AB 2015055).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000794
2016-02-01
2019-12-08
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/2/801.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000794&mimeType=html&fmt=ahah

References

  1. Arden Jones M. P., McCarthy A. J., Cross T.. ( 1979;). Taxonomic and serologic studies on Micropolyspora faeni and Micropolyspora strains from soil bearing the specific epithet rectivirgula. J Gen Microbiol 115: 343–354 [CrossRef] [PubMed].
    [Google Scholar]
  2. Ash C., Farrow J. A. E, Wallbanks S., Collins M. D.. ( 1991;). Phylogenetic heterogeneity of the genus Bacillus revealed by comparative analysis of small-subunit-ribosomal RNA sequences. Lett Appl Microbiol 13: 202–206 [CrossRef].
    [Google Scholar]
  3. Claus D., Berkeley R. C. W. ( 1986;). Genus Bacillus. . In Bergey's Manual of Systematic Bacteriology, pp. 1105–1139. Edited by Sneath P. H., Mair N., Sharpe M. E., Holt J. G.. Baltimore: Williams & Wilkins;.
    [Google Scholar]
  4. Cohn F.. ( 1872;). Untersuchungenüber Bakterien. Beitrage zur Biologieder Pflanzen, 1875 1 (Heft 2) 1: 127–224.
    [Google Scholar]
  5. Collins M. D., Jones D.. ( 1980;). Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2, 4-diaminobutyric acid. J Appl Bacteriol 48: 459–470 [CrossRef].
    [Google Scholar]
  6. Cowan S. T., Steel K. J.. ( 1965;). Manual for the Identification of Medical Bacteria London: Cambridge University Press;.
    [Google Scholar]
  7. Delaporte B., Sasson A.. ( 1967;). [Study of bacteria from arid soils of Morocco: Brevibacterium haloterans n. sp. and Brevibacterium frigoritolerans n. sp]. C R Acad Sci Hebd Seances Acad Sci D 264: 2257–2260 [PubMed].
    [Google Scholar]
  8. Dong X. Z., Cai M. Y.. ( 2001;). Determinative Manual for Routine Bacteriology Beijing: Scientific Press;.
    [Google Scholar]
  9. Fan H., Su C., Wang Y., Yao J., Zhao K., Wang Y., Wang G.. ( 2008;). Sedimentary arsenite-oxidizing and arsenate-reducing bacteria associated with high arsenic groundwater from Shanyin, Northwestern China. J Appl Microbiol 105: 529–539 [CrossRef] [PubMed].
    [Google Scholar]
  10. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791 [CrossRef].
    [Google Scholar]
  11. Fitch W. M.. ( 1971;). Towards defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20: 406–416 [CrossRef].
    [Google Scholar]
  12. Guindon S., Dufayard J. F., Lefort V., Anisimova M., Hordijk W., Gascuel O.. ( 2010;). New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59: 307–321 [CrossRef] [PubMed].
    [Google Scholar]
  13. Heyrman J., Logan N. A., Rodríguez-Díaz M., Scheldeman P., Lebbe L., Swings J., Heyndrickx M., De Vos P.. ( 2005;). Study of mural painting isolates, leading to the transfer of ‘Bacillus maroccanus’ and ‘Bacillus carotarum’ to Bacillus simplex, emended description of Bacillus simplex, re-examination of the strains previously attributed to ‘Bacillus macroides’ and description of Bacillus muralis sp. nov. Int J Syst Evol Microbiol 55: 119–131 [CrossRef] [PubMed].
    [Google Scholar]
  14. Holt J. G., Kreig N. R., Sneath P. H. A, Stanley J. T., Williams S. T.. ( 1994;). Bergey's Manual of Determinative Bacteriology Baltimore: Williams and Wilkins;.
    [Google Scholar]
  15. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H., other authors. ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62: 716–721 [CrossRef] [PubMed].
    [Google Scholar]
  16. Kimura M.. ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16: 111–120 [CrossRef] [PubMed].
    [Google Scholar]
  17. Kosowski K., Schmidt M., Pukall R., Hause G., Kämpfer P., Lechner U.. ( 2014;). Bacillus pervagus sp. nov. and Bacillus andreesenii sp. nov., isolated from a composting reactor. Int J Syst Evol Microbiol 64: 88–94 [CrossRef] [PubMed].
    [Google Scholar]
  18. Kroppenstedt R. M.. ( 1985;). Fatty acid and menaquinone analysis of actinomycetes and related organisms. . In Chemical Methods in Bacterial Systematics (Society for Applied Bacteriology Technical Series no. 20), pp. 173–199. Edited by Goodfellow M., Minnikin D. E.. London: Academic Press;.
    [Google Scholar]
  19. Li J., Yang G., Wu M., Zhao Y., Zhou S.. ( 2014;). Bacillus huizhouensis sp. nov., isolated from a paddy field soil. Antonie van Leeuwenhoek 106: 357–363 [CrossRef] [PubMed].
    [Google Scholar]
  20. Lim J. M., Jeon C. O., Lee J. R., Park D. J., Kim C. J.. ( 2007;). Bacillus kribbensis sp. nov., isolated from a soil sample in Jeju, Korea. Int J Syst Evol Microbiol 57: 2912–2916 [CrossRef] [PubMed].
    [Google Scholar]
  21. Logan N. A., Berge O., Bishop A. H., Busse H.-J., De Vos P., Fritze D., Heyndrickx M., Kämpfer P., Rabinovitch L., other authors. ( 2009;). Proposed minimal standards for describing new taxa of aerobic, endospore-forming bacteria. Int J Syst Evol Microbiol 59: 2114–2121 [CrossRef] [PubMed].
    [Google Scholar]
  22. Nakamura L. K., Roberts M. S., Cohan F. M.. ( 1999;). Relationship of Bacillus subtilis clades associated with strains 168 and W23: a proposal for Bacillus subtilis subsp. subtilis subsp. nov. and Bacillus subtilis subsp. spizizenii subsp. nov. Int J Syst Bacteriol 49: 1211–1215 [CrossRef] [PubMed].
    [Google Scholar]
  23. Pettersson B., de Silva S. K., Uhlén M., Priest F. G.. ( 2000;). Bacillus siralis sp. nov., a novel species from silage with a higher order structural attribute in the 16S rRNA genes. Int J Syst Evol Microbiol 50: 2181–2187 [CrossRef] [PubMed].
    [Google Scholar]
  24. Priest F. G., Goodfellow M., Todd C.. ( 1988;). A numerical classification of the genus Bacillus. J Gen Microbiol 134: 1847–1882 [PubMed].
    [Google Scholar]
  25. Rheims H., Frühling A., Schumann P., Rohde M., Stackebrandt E.. ( 1999;). Bacillus silvestris sp. nov., a new member of the genus Bacillus that contains lysine in its cell wall. Int J Syst Bacteriol 49: 795–802 [CrossRef] [PubMed].
    [Google Scholar]
  26. Rooney A. P., Price N. P. J, Ehrhardt C., Swezey J. L., Bannan J. D.. ( 2009;). Phylogeny and molecular taxonomy of the Bacillus subtilis species complex and description of Bacillus subtilis subsp. inaquosorum subsp. nov. Int J Syst Evol Microbiol 59: 2429–2436 [CrossRef] [PubMed].
    [Google Scholar]
  27. Ryu E.. ( 1938;). On the Gram-differentiation of bacteria by the simplest method. J Jpn Soc Vet Sci 17: 205–207 [CrossRef].
    [Google Scholar]
  28. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425 [PubMed].
    [Google Scholar]
  29. Sasser M.. ( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids MIDI Technical Note 101 Newark, DE: MIDI Inc;.
    [Google Scholar]
  30. Schumann P.. ( 2011;). Peptidoglycan structure. Methods Microbiol 38: 101–129 [CrossRef].
    [Google Scholar]
  31. Smibert R. M., Krieg N. R.. ( 1994;). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R.. Washington, DC: American Society for Microbiology;.
    [Google Scholar]
  32. Sonalkar V. V., Mawlankar R., Venkata Ramana V., Joseph N., Shouche Y. S., Dastager S. G.. ( 2015;). Bacillus filamentosus sp. nov., isolated from sediment sample. Antonie van Leeuwenhoek 107: 433–441 [CrossRef] [PubMed].
    [Google Scholar]
  33. Tamaoka J., Komagata K.. ( 1984;). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25: 125–128 [CrossRef].
    [Google Scholar]
  34. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S.. ( 2013;). mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30: 2725–2729 [CrossRef] [PubMed].
    [Google Scholar]
  35. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25: 4876–4882 [CrossRef] [PubMed].
    [Google Scholar]
  36. Venkateswaran K., Kempf M., Chen F., Satomi M., Nicholson W., Kern R.. ( 2003;). Bacillus nealsonii sp. nov., isolated from a spacecraft-assembly facility, whose spores are γ-radiation resistant. Int J Syst Evol Microbiol 53: 165–172 [CrossRef] [PubMed].
    [Google Scholar]
  37. Weeger W., Lièvremont D., Perret M., Lagarde F., Hubert J. C., Leroy M., Lett M. C.. ( 1999;). Oxidation of arsenite to arsenate by a bacterium isolated from an aquatic environment. Biometals 12: 141–149 [CrossRef] [PubMed].
    [Google Scholar]
  38. Xie C. H., Yokota A.. ( 2003;). Phylogenetic analyses of Lampropedia hyalina based on the 16S rRNA gene sequence. J Gen Appl Microbiol 49: 345–349 [CrossRef] [PubMed].
    [Google Scholar]
  39. You Z. Q., Li J., Qin S., Tian X. P., Wang F. Z., Zhang S., Li W. J.. ( 2013;). Bacillus abyssalis sp. nov., isolated from a sediment of the South China Sea. Antonie van Leeuwenhoek 103: 963–969 [CrossRef] [PubMed].
    [Google Scholar]
  40. Yumoto I., Hirota K., Yamaga S., Nodasaka Y., Kawasaki T., Matsuyama H., Nakajima K.. ( 2004;). Bacillus asahii sp. nov., a novel bacterium isolated from soil with the ability to deodorize the bad smell generated from short-chain fatty acids. Int J Syst Evol Microbiol 54: 1997–2001 [CrossRef] [PubMed].
    [Google Scholar]
  41. Zhang L., Wu G. L., Wang Y., Dai J., Fang C. X.. ( 2011;). Bacillus deserti sp. nov., a novel bacterium isolated from the desert of Xinjiang, China. Antonie van Leeuwenhoek 99: 221–229 [CrossRef] [PubMed].
    [Google Scholar]
  42. Zhang Y. Z., Chen W. F., Li M., Sui X. H., Liu H.-C., Zhang X. X., Chen W. X.. ( 2012;). Bacillus endoradicis sp. nov., an endophytic bacterium isolated from soybean root. Int J Syst Evol Microbiol 62: 359–363 [CrossRef] [PubMed].
    [Google Scholar]
  43. Zhao F., Feng Y.-Z., Chen R.-R., Zhang H.-Y., Wang J.-H., Lin X.-G.. ( 2014;). Bacillus fengqiuensis sp. nov., isolated from a typical sandy loam soil under long-term fertilization. Int J Syst Evol Microbiol 64: 2849–2856 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000794
Loading
/content/journal/ijsem/10.1099/ijsem.0.000794
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error