1887

Abstract

A Gram-reaction-negative, aerobic, non-motile, red-pigmented and rod-shaped bacterium, designated XF-6R, was isolated from mountain soil in the Sichuan province of China. Phylogenetic trees based on 16S rRNA gene sequence analysis showed that XF-6R belonged to the genus . The greatest 16S rRNA gene sequence similarities of strain XF-6R were with PB17 (96.4 %) and GSR0100 (95.8 %). Summed feature 3 (Cω7 and/or Cω6), iso-C, Cω5 and anteiso-C were the major fatty acids (>10 %). The only menaquinone was menaquinone-7. The major polar lipids were phosphatidylethanolamine, four aminolipids, four phosphoaminolipids and three lipids. The DNA G+C content was 62 mol%. On the basis of the polyphasic taxonomic analysis, strain XF-6R is considered to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is XF-6R ( = KCTC 42733 = CCTCC AB 2015206).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000792
2016-02-01
2019-12-05
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/2/812.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000792&mimeType=html&fmt=ahah

References

  1. Baik K. S., Seong C. N., Moon E. Y., Park Y. D., Yi H., Chun J.. ( 2006;). Hymenobacter rigui sp. nov., isolated from wetland freshwater. Int J Syst Evol Microbiol 56: 2189–2192 [CrossRef] [PubMed].
    [Google Scholar]
  2. Bernardet J. F., Nakagawa Y., Holmes B..Subcommittee on the taxonomy of Flavobacterium and Cytophaga-like bacteria of the International Committee on Systematics of Prokaryotes ( 2002;). Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 52: 1049–1070 [PubMed].
    [Google Scholar]
  3. Buczolits S., Denner E. B. M, Vybiral D., Wieser M., Kämpfer P., Busse H. J.. ( 2002;). Classification of three airborne bacteria and proposal of Hymenobacter aerophilus sp. nov. Int J Syst Evol Microbiol 52: 445–456 [CrossRef] [PubMed].
    [Google Scholar]
  4. Buczolits S. E., Denner B. M., Kämpfer P., Busse H. J.. ( 2006;). Proposal of Hymenobacter norwichensis sp. nov., classification of ‘Taxeobacter ocellatus’, ‘Taxeobacter gelupurpurascens’ and ‘Taxeobacter chitinovorans’ as Hymenobacter ocellatus sp. nov., Hymenobacter gelipurpurascens sp. nov. and Hymenobacter chitinivorans sp. nov., respectively, and emended description of the genus Hymenobacter Hirsch et al. 1999. Int J Syst Evol Microbiol 56: 2189–2192 [CrossRef] [PubMed].
    [Google Scholar]
  5. Collins M. D.. ( 1985;). Isoprenoid quinone analysis in bacterial classification and identification. . In Chemical Methods in Bacterial Systematics, pp. 267–287. Edited by Goodfellow M., Minnikin D. E.. London: Academic Press;.
    [Google Scholar]
  6. Cowan S. T., Steel K. J.. ( 1965;). Manual for the Identification of Medical Bacteria London: Cambridge University Press;.
    [Google Scholar]
  7. Dong X. Z., Cai M. Y.. ( 2001;). Determinative Manual for Routine Bacteriology Beijing: Scientific Press;.
    [Google Scholar]
  8. Fan H., Su C., Wang Y., Yao J., Zhao K., Wang Y., Wang G.. ( 2008;). Sedimentary arsenite-oxidizing and arsenate-reducing bacteria associated with high arsenic groundwater from Shanyin, Northwestern China. J Appl Microbiol 105: 529–539 [CrossRef] [PubMed].
    [Google Scholar]
  9. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17: 368–376 [CrossRef] [PubMed].
    [Google Scholar]
  10. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791 [CrossRef].
    [Google Scholar]
  11. Fitch W. M.. ( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20: 406–416 [CrossRef].
    [Google Scholar]
  12. Han L., Wu S. J., Qin C. Y., Zhu Y. H., Lu Z. Q., Xie B., Lv J.. ( 2014;). Hymenobacter qilianensis sp. nov., isolated from a subsurface sandstone sediment in the permafrost region of Qilian Mountains, China and emended description of the genus Hymenobacter. Antonie van Leeuwenhoek 105: 971–978 [CrossRef] [PubMed].
    [Google Scholar]
  13. Hirsch P., Ludwig W., Hethke C., Sittig M., Hoffmann B., Gallikowski C. A.. ( 1998;). Hymenobacter roseosalivarius gen. nov., sp. nov. from continental Antarctica soils and sandstone: bacteria of the Cytophaga/Flavobacterium/Bacteroides line of phylogenetic descent. Syst Appl Microbiol 21: 374–383 [CrossRef] [PubMed].
    [Google Scholar]
  14. Hoang V. A., Kim Y. J., Nguyen N. L., Yang D. C.. ( 2013;). Hymenobacter ginsengisoli sp. nov., isolated from soil of a ginseng field. Int J Syst Evol Microbiol 63: 661–666 [CrossRef] [PubMed].
    [Google Scholar]
  15. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H., other authors. ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62: 716–721 [CrossRef] [PubMed].
    [Google Scholar]
  16. Kimura M.. ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16: 111–120 [CrossRef] [PubMed].
    [Google Scholar]
  17. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H.. ( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2: 233–241 [CrossRef].
    [Google Scholar]
  18. Reddy G. S., Garcia-Pichel F.. ( 2013;). Description of Hymenobacter arizonensis sp. nov. from the southwestern arid lands of the United States of America. Antonie van Leeuwenhoek 103: 321–330 [CrossRef] [PubMed].
    [Google Scholar]
  19. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425 [PubMed].
    [Google Scholar]
  20. Sasser M.. ( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids MIDI Technical Note 101 Newark: MIDI Inc;.
    [Google Scholar]
  21. Srinivasan S., Joo E. S., Lee J. J., Kim M. K.. ( 2015;). Hymenobacter humi sp. nov., a bacterium isolated from soil. Antonie van Leeuwenhoek 107: 1411–1419 [CrossRef] [PubMed].
    [Google Scholar]
  22. Tamaoka J., Komagata K.. ( 1984;). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25: 125–128 [CrossRef].
    [Google Scholar]
  23. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28: 2731–2739 [CrossRef] [PubMed].
    [Google Scholar]
  24. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25: 4876–4882 [CrossRef] [PubMed].
    [Google Scholar]
  25. Zhang L., Dai J., Tang Y., Luo X., Wang Y., An H., Fang C., Zhang C.. ( 2009;). Hymenobacter deserti sp. nov., isolated from the desert of Xinjiang, China. Int J Syst Evol Microbiol 59: 77–82 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000792
Loading
/content/journal/ijsem/10.1099/ijsem.0.000792
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error