1887

Abstract

A novel Gram-stain-negative, obligately aerobic, non-motile and coccus-shaped bacterium, designated strain CN1, was isolated from the intestine of a Korean rockfish, . The optimum growth condition for strain CN1 was 25 °C, pH 7 and 0–1 % (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain CN1 was in the genus and that the nearest type strain was YH12 with 98.65 % 16S rRNA gene sequence similarity. The primary cellular fatty acids of strain CN1 were summed feature 3 (comprised of Cω7 and/or Cω6), C and summed feature 8 (comprised of Cω6 and/or Cω7). The predominant isoprenoid quinone was ubiquinone Q-8. The polar lipids were phosphatidylglycerol, phosphatidylethanolamine, an unidentified lipid, an unidentified phospholipid and two aminophospholipids. The DNA G+C content was 65.5 mol%. The phenotypic, phylogenetic and genotypic analyses indicated that strain CN1 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is CN1 ( = KACC 18403 = JCM 30718).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000790
2016-02-01
2019-12-15
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/2/780.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000790&mimeType=html&fmt=ahah

References

  1. Aramli M. S., Nazari R. M., Gharibi M. R.. 2015; Effect of post-thaw storage time on motility and fertility of cryopreserved beluga sturgeon (Huso huso) sperm. Reprod Domest Anim50:349–352 [CrossRef][PubMed]
    [Google Scholar]
  2. Bae J.-W., Park Y.-H.. 2006; Homogeneous versus heterogeneous probes for microbial ecological microarrays. Trends Biotechnol24:318–323 [CrossRef][PubMed]
    [Google Scholar]
  3. Bae J.-W., Rhee S.-K., Nam Y.-D., Park Y.-H.. 2005; Generation of subspecies level-specific microbial diagnostic microarrays using genes amplified from subtractive suppression hybridization as microarray probes. Nucleic Acids Res33:e113 [CrossRef][PubMed]
    [Google Scholar]
  4. Chang Y.-H., Han J. I., Chun J., Lee K. C., Rhee M.-S., Kim Y.-B., Bae K. S.. 2002; Comamonas koreensis sp. nov., a non-motile species from wetland in Woopo, Korea. Int J Syst Evol Microbiol52:377–381 [CrossRef][PubMed]
    [Google Scholar]
  5. Chang H.-W., Sung Y., Kim K.-H., Nam Y.-D., Roh S. W., Kim M.-S., Jeon C. O., Bae J.-W.. 2008; Development of microbial genome-probing microarrays using digital multiple displacement amplification of uncultivated microbial single cells. Environ Sci Technol42:6058–6064 [CrossRef][PubMed]
    [Google Scholar]
  6. Collins M. D., Jones D.. 1981; A note on the separation of natural mixtures of bacterial ubiquinones using reverse-phase partition thin-layer chromatography and high performance liquid chromatography. J Appl Bacteriol51:129–134 [CrossRef][PubMed]
    [Google Scholar]
  7. De Vos P., Kersters K., Falsen E., Pot B., Gillis M., Segers P., De Ley J.. 1985; Comamonas Davis and Park 1962 gen. nov., nom. rev. emend., and Comamonas terrigena Hugh 1962 sp. nov., nom. rev. Int J Syst Bacteriol35:443–453 [CrossRef]
    [Google Scholar]
  8. Felsenstein J.. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  9. Gonzalez J. M., Saiz-Jimenez C.. 2002; A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. Environ Microbiol4:770–773 [CrossRef][PubMed]
    [Google Scholar]
  10. Hatayama K.. 2014; Comamonas humi sp. nov., isolated from soil. Int J Syst Evol Microbiol64:3976–3982 [CrossRef][PubMed]
    [Google Scholar]
  11. Hyun D.-W., Shin N.-R., Kim M.-S., Kim P. S., Kim J. Y., Whon T. W., Bae J.-W.. 2014; Actinomyces haliotis sp. nov., a bacterium isolated from the gut of an abalone, Haliotis discus hannai. Int J Syst Evol Microbiol64:456–461 [CrossRef][PubMed]
    [Google Scholar]
  12. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H., other authors. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  13. Kim P. S., Shin N.-R., Kim J. Y., Yun J.-H., Hyun D.-W., Bae J.-W.. 2013; Gibbsiella papilionis sp. nov., isolated from the intestinal tract of the butterfly Mycalesis gotama, and emended description of the genus Gibbsiella. Int J Syst Evol Microbiol63:2607–2611 [CrossRef][PubMed]
    [Google Scholar]
  14. Kluge A. G., Farris J. S.. 1969; Quantitative phyletics and the evolution of anurans. Syst Zool18:1–32 [CrossRef]
    [Google Scholar]
  15. Lane D. J.. 1991; 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics pp115–175Edited by Stackebrandt E., Goodfellow M.. Chichester: Wiley;
    [Google Scholar]
  16. Loy A., Schulz C., Lücker S., Schöpfer-Wendels A., Stoecker K., Baranyi C., Lehner A., Wagner M., 16S .. 2005; rRNA gene-based oligonucleotide microarray for environmental monitoring of the betaproteobacterial order Rhodocyclales. Appl Environ Microbiol71:1373–1386 [CrossRef][PubMed]
    [Google Scholar]
  17. MFAFF 2013; Statistical Yearbook 2012 Daejeon, Korea: Ministry for Food, Agriculture, Forestry and Fisheries;
    [Google Scholar]
  18. MIDI 1999; Sherlock Microbial Identification System Operating Manual, version 3.0 MIDI Inc Newark, DE: MIDI Sherlock Microbial Identification System Operating Manual;
    [Google Scholar]
  19. Rochelle P. A., Fry J. C., Parkes R. J., Weightman A. J.. 1992; DNA extraction for 16S rRNA gene analysis to determine genetic diversity in deep sediment communities. FEMS Microbiol Lett100:59–65 [CrossRef][PubMed]
    [Google Scholar]
  20. Saitou N., Nei M.. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol4:406–425[PubMed]
    [Google Scholar]
  21. Sasser M.. 1990; Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101 Newark, DE: MIDI Inc;
    [Google Scholar]
  22. Sun L. N., Zhang J., Chen Q., He J., Li Q. F., Li S. P.. 2013; Comamonas jiangduensis sp. nov., a biosurfactant-producing bacterium isolated from agricultural soil. Int J Syst Evol Microbiol63:2168–2173 [CrossRef][PubMed]
    [Google Scholar]
  23. Svanevik C. S., Levsen A., Lunestad B. T.. 2013; The role of muscle-invading anisakid larvae on bacterial contamination of the flesh of post-harvest blue whiting (Micromesistius poutassou). Food Cont30:526–530 [CrossRef]
    [Google Scholar]
  24. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. 2011; mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol28:2731–2739 [CrossRef]
    [Google Scholar]
  25. Thompson J. D., Higgins D. G., Gibson T. J.. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res22:4673–4680 [CrossRef][PubMed]
    [Google Scholar]
  26. Tindall B. J.. 1990; Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett66:199–202 [CrossRef]
    [Google Scholar]
  27. Tittsler R. P., Sandholzer L. A.. 1936; The use of semi-solid agar for the detection of bacterial motility. J Bacteriol31:575–580[PubMed]
    [Google Scholar]
  28. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D, Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C, Murray R. G. E, other authors. 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol37:463–464 [CrossRef]
    [Google Scholar]
  29. Willems A., Gillis M.. 2005; Family IV. Comamonadaceae Willems, De Ley, Gillis and Kersters 1991a, 447VP. In Bergey's Manual of Systematic Bacteriology, 2nd edn.vol 2 pp686–688Edited by Brenner D. J., Krieg N. R., Staley J. T., Garrity G. M.. New York: Springer;
    [Google Scholar]
  30. Xin H., Itoh T., Zhou P., Suzuki K., Kamekura M., Nakase T.. 2000; Natrinema versiforme sp. nov., an extremely halophilic archaeon from Aibi salt lake, Xinjiang, China. Int J Syst Evol Microbiol50:1297–1303 [CrossRef][PubMed]
    [Google Scholar]
  31. Zhang J., Wang Y., Zhou S., Wu C., He J., Li F.. 2013; Comamonas guangdongensis sp. nov., isolated from subterranean forest sediment, and emended description of the genus Comamonas. Int J Syst Evol Microbiol63:809–814 [CrossRef][PubMed]
    [Google Scholar]
  32. Zhu D., Xie C., Huang Y., Sun J., Zhang W.. 2014; Description of Comamonas serinivorans sp. nov., isolated from wheat straw compost. Int J Syst Evol Microbiol64:4141–4146 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000790
Loading
/content/journal/ijsem/10.1099/ijsem.0.000790
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error