1887

Abstract

Three strains of a butyrate-producing bacterium were isolated from the rumen contents of grazing sheep and cows. The strains were anaerobic, with Gram-positive cell walls, straight-to-slightly-curved, rod-shaped, non-spore-forming and single flagellate. C, C, C and C were the predominant fatty acids. The cell-wall peptidoglycan type was A1. The DNA G+C content varied from 41.4 to 42.2 mol%. 16S rRNA gene sequence similarities between the isolates and , and were found to be 96, 95 and 95 %, respectively. The phylogenetic tree showed that the strains constituted a different taxon, separate from other taxa with validly published names and forming a cluster with strains of On the basis of phenotypic, chemotaxonomic and phylogenetic results (16S RNA, , , genes), the isolates are considered to represent a novel species of a new genus of the family , for which the name gen. nov., sp. nov. is proposed (type strain JK623 = DSM 29029 = LMG 28559). We also propose the transfer of to the new genus gen. nov., comb nov. This new genus represents saccharoclastic, chemo-organotrophic and obligatory anaerobic, non-spore-forming rods with Gram-positive membrane. The main fermentation products on peptone yeast glucose (PYG) medium were butyrate, acetate, hydrogen and lactate. The type species of the genus is gen. nov., comb nov. ( ) with type strain ATCC 33656 ( = JCM 17463).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000788
2016-02-01
2020-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/2/768.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000788&mimeType=html&fmt=ahah

References

  1. Castresana J.. 2000; Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol17:540–552 [CrossRef][PubMed]
    [Google Scholar]
  2. Duncan S. H., Flint H. J.. 2008; Proposal of a neotype strain (A1-86) for Eubacterium rectale. Request for an opinion. Int J Syst Evol Microbiol58:1735–1736 [CrossRef][PubMed]
    [Google Scholar]
  3. Duncan S. H., Aminov R. I., Scott K. P., Louis P., Stanton T. B., Flint H. J.. 2006; Proposal of Roseburia faecis sp. nov., Roseburia hominis sp. nov. and Roseburia inulinivorans sp. nov., based on isolates from human faeces. Int J Syst Evol Microbiol56:2437–2441 [CrossRef][PubMed]
    [Google Scholar]
  4. Holdeman L. V., Moore W. E. C. 1974; New genus, Coprococcus, twelve new species and emended description of four previously described species of bacteria from human feces. Int J Syst Bacteriol24:260–277 [CrossRef]
    [Google Scholar]
  5. Huang C. H., Lee F. L.. 2011; The dnaK gene as a molecular marker for the classification and discrimination of the Lactobacillus casei group. Antonie van Leeuwenhoek99:319–327 [CrossRef][PubMed]
    [Google Scholar]
  6. Killer J., Kopecný J., Mrázek J., Rada V., Benada O., Koppová I., Havlík J., Straka J.. 2009; Bifidobacterium bombi sp. nov., from the bumblebee digestive tract. Int J Syst Evol Microbiol59:2020–2024 [CrossRef][PubMed]
    [Google Scholar]
  7. Killer J., Kopečný J., Mrázek J., Koppová I., Havlík J., Benada O., Kott T.. 2011; Bifidobacterium actinocoloniiforme sp. nov. and Bifidobacterium bohemicum sp. nov., from the bumblebee digestive tract. Int J Syst Evol Microbiol61:1315–1321 [CrossRef][PubMed]
    [Google Scholar]
  8. Killer J., Rocková Š., Vlková E., Rada V., Havlík J., Kopečný J., Bunesová V., Benada O., Kofronová O., other authors. 2013; Alloscardovia macacae sp. nov., isolated from the milk of a macaque (Macaca mulatta), emended description of the genus Alloscardovia and proposal of Alloscardovia criceti comb. nov. Int J Syst Evol Microbiol63:4439–4446 [CrossRef][PubMed]
    [Google Scholar]
  9. Kopečný J., Zorec M., Mrázek J., Kobayashi Y., Marinšek-Logar R.. 2003; Butyrivibrio hungatei sp. nov. and Pseudobutyrivibrio xylanivorans sp. nov., butyrate-producing bacteria from the rumen. Int J Syst Evol Microbiol53:201–209 [CrossRef][PubMed]
    [Google Scholar]
  10. Larkin M. A., Blackshields G., Brown N. P., Chenna R., McGettigan P. A., McWilliam H., Valentin F., Wallace I. M., Wilm A., other authors. 2007; clustal w clustal x version 2. Bioinformatics23:2947–2948 [CrossRef][PubMed]
    [Google Scholar]
  11. Louis P., Flint H. J.. 2009; Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiol Lett294:1–8 [CrossRef][PubMed]
    [Google Scholar]
  12. Louis P., Young P., Holtrop G., Flint H. J.. 2010; Diversity of human colonic butyrate-producing bacteria revealed by analysis of the butyryl-CoA:acetate CoA-transferase gene. Environ Microbiol12:304–314 [CrossRef][PubMed]
    [Google Scholar]
  13. Mesbah M., Premachandran U., Whitman W. B.. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol39:159–167 [CrossRef]
    [Google Scholar]
  14. Moon C. D., Pacheco D. M., Kelly W. J., Leahy S. C., Li D., Kopečný J., Attwood G. T.. 2008; Reclassification of Clostridium proteoclasticum as Butyrivibrio proteoclasticus comb. nov., a butyrate-producing ruminal bacterium. Int J Syst Evol Microbiol58:2041–2045 [CrossRef][PubMed]
    [Google Scholar]
  15. Moore W. E. C, Holdeman Moore L. V.. 1986; Genus Eubacterium Prévot 1938. In Bergey's Manual of Systematic Bacteriologyvol 2 pp1353–1373Edited by Sneath P. H. A., Mair N. S., Sharpe M. E., Holt J. G.. Baltimore: Williams & Wilkins;
    [Google Scholar]
  16. Mun S., Lee J., Lee S., Han K., Ahn T. Y.. 2013; Phylogeny of flavobacteria group isolated from freshwater using multilocus sequencing analysis. Genomics Inform11:272–276 [CrossRef][PubMed]
    [Google Scholar]
  17. Prévot A. R.. 1938; Études de systématique bacteriénne: III. Invalidé du gendre Bacteroides Castellani et Chalmers démembrement et reclassification. Ann Inst Pasteur (Paris)20:285–307
    [Google Scholar]
  18. Prévot A. R., Turpin A., Kaiser P.. 1967; Les bactéries anaérobies Paris: Dunod;
    [Google Scholar]
  19. Ribeiro R. A., Barcellos F. G., Thompson F. L., Hungria M.. 2009; Multilocus sequence analysis of Brazilian Rhizobium microsymbionts of common bean (Phaseolus vulgaris L.) reveals unexpected taxonomic diversity. Res Microbiol160:297–306 [CrossRef][PubMed]
    [Google Scholar]
  20. Sanders S. K., Alexander E. L., Braylan R. C.. 1975; A high-yield technique for preparing cells fixed in suspension for scanning electron microscopy. J Cell Biol67:476–480 [CrossRef][PubMed]
    [Google Scholar]
  21. Schumann P.. 2011; Peptidoglycan structure. Methods Microbiol38:101–129 [CrossRef]
    [Google Scholar]
  22. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S.. 2013; mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  23. Trachtenberg S., Cohen-Krausz S.. 2006; The archaeabacterial flagellar filament: a bacterial propeller with a pilus-like structure. J Mol Microbiol Biotechnol11:208–220 [CrossRef][PubMed]
    [Google Scholar]
  24. Wade W. G.. 2009; Genus Eubacterium. In Bergey's Manual of Systematic Bacteriologyvol 3 pp865–891Edited by Vos P., Garrity G., Jones D., Krieg N. R., Ludwig W., Rainey F. A., Schleifer K.-H., Whitman W. B.. Dordrecht: Springer;
    [Google Scholar]
  25. Whelan S., Goldman N.. 2001; A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol Biol Evol18:691–699 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000788
Loading
/content/journal/ijsem/10.1099/ijsem.0.000788
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error