1887

Abstract

Strain BEY10 was isolated from an old fermentation pit, which had been used for the production of Chinese strong-flavoured liquor for over 20 years. The strain was strictly anaerobic, Gram-stain positive, rod-shaped, non-motile and spore-forming. Strain BEY10 grew at temperatures of 22–47 °C (optimum 37 °C), at pH 5.5–9.0 (optimum pH 7.5–8.5) and with NaCl concentrations of 0–4 % (w/v) (optimum 0 %). The isolate was able to utilize glucose, mannitol, lactose, xylose, maltose, glycerol, cellobiose and trehalose as carbon sources for growth. The major end-products from glucose fermentation were ethanol and butyric acid. The polar lipids consisted of phosphatidylglycerol, phosphatidylethanolamine, phospholipids, a glycolipid and an aminolipid. The predominant fatty acids (>10 %) were C, C, C, C and C. The DNA G+C content was 34.4 mol%. Sequence analysis of the 16S rRNA gene indicated that strain BEY10 belongs to the genus in the family . The closest phylogenetic neighbour is DSM 17049, showing 97.6 % 16S rRNA gene sequence similarity with strain BEY10. DNA–DNA relatedness values of strain BEY10 with DSM 17049, DSM 4474 and DSM 10365 were 58.8 %, 57.9 % and 42.2 %, respectively. This characterization based on phylogenetic, phenotypic and chemotaxonomic evidence demonstrated that strain BEY10 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is BEY10 ( = ACCC 00785 = DSM 100320).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000787
2016-02-01
2020-04-06
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/2/749.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000787&mimeType=html&fmt=ahah

References

  1. Atlas R. M.. 2010; Handbook of Microbiological Media, 4th edn. Boca Raton, FL: CRC Press;[CrossRef]
    [Google Scholar]
  2. Bligh E. G., Dyer W. J.. 1959; A rapid method of total lipid extraction and purification. Can J Biochem Physiol37:911–917 [CrossRef][PubMed]
    [Google Scholar]
  3. Cai G., Jin B., Saint C., Monis P.. 2011; Genetic manipulation of butyrate formation pathways in Clostridium butyricum . J Biotechnol155:269–274 [CrossRef][PubMed]
    [Google Scholar]
  4. Cirne D. G., Delgado O. D., Marichamy S., Mattiasson B.. 2006; Clostridium lundense sp. nov., a novel anaerobic lipolytic bacterium isolated from bovine rumen. Int J Syst Evol Microbiol56:625–628 [CrossRef][PubMed]
    [Google Scholar]
  5. Colin T., Bories A., Lavigne C., Moulin G.. 2001; Effects of acetate and butyrate during glycerol fermentation by Clostridium butyricum . Curr Microbiol43:238–243 [CrossRef][PubMed]
    [Google Scholar]
  6. De Ley J., Cattoir H., Reynaerts A.. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem12:133–142 [CrossRef][PubMed]
    [Google Scholar]
  7. Felsenstein J.. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution39:783–791 [CrossRef]
    [Google Scholar]
  8. Gerhardt P., Murray R. G. E, Wood W. A., Krieg N. R.. 1994; Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology;
    [Google Scholar]
  9. Johnston N. C., Goldfine H.. 1983; Lipid composition in the classification of the butyric acid-producing clostridia. J Gen Microbiol129:1075–1081[PubMed]
    [Google Scholar]
  10. Johnston N. C., Aygun-Sunar S., Guan Z., Ribeiro A. A., Daldal F., Raetz C. R. H, Goldfine H.. 2010; A phosphoethanolamine-modified glycosyl diradylglycerol in the polar lipids of Clostridium tetani . J Lipid Res51:1953–1961 [CrossRef][PubMed]
    [Google Scholar]
  11. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H., other authors. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  12. Lane D. J.. 1991; 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics pp115–175Edited by Stackebrandt E., Goodfellow M.. Chichester: Wiley;
    [Google Scholar]
  13. Liu C., Huang D., Liu L., Zhang J., Deng Y., Chen L., Zhang W., Wu Z., Fan A., other authors. 2014; Clostridium swellfunianum sp. nov., a novel anaerobic bacterium isolated from the pit mud of Chinese Luzhou-flavor liquor production. Antonie van Leeuwenhoek106:817–825 [CrossRef][PubMed]
    [Google Scholar]
  14. Markossian S., Becker P., Märkl H., Antranikian G.. 2000; Isolation and characterization of lipid-degrading Bacillus thermoleovorans IHI-91 from an icelandic hot spring. Extremophiles4:365–371 [CrossRef][PubMed]
    [Google Scholar]
  15. Mesbah M., Premachandran U., Whitman W. B.. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol39:159–167 [CrossRef]
    [Google Scholar]
  16. Müller V.. 2003; Energy conservation in acetogenic bacteria. Appl Environ Microbiol69:6345–6353 [CrossRef][PubMed]
    [Google Scholar]
  17. Papoutsakis E. T.. 2008; Engineering solventogenic clostridia. Curr Opin Biotechnol19:420–429 [CrossRef][PubMed]
    [Google Scholar]
  18. Saitou N., Nei M.. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol4:406–425[PubMed]
    [Google Scholar]
  19. Sasser M.. 1990; Identification of bacteria by gas chromatography of cellular fatty acids MIDI Technical Note 101 Newark, DE: MIDI Inc;
    [Google Scholar]
  20. Seedorf H., Fricke W. F., Veith B., Brüggemann H., Liesegang H., Strittmatter A., Miethke M., Buckel W., Hinderberger J., other authors. 2008; The genome of Clostridium kluyveri, a strict anaerobe with unique metabolic features. Proc Natl Acad Sci U S A105:2128–2133 [CrossRef][PubMed]
    [Google Scholar]
  21. Shcherbakova V. A., Chuvilskaya N. A., Rivkina E. M., Pecheritsyna S. A., Laurinavichius K. S., Suzina N. E., Osipov G. A., Lysenko A. M., Gilichinsky D. A., Akimenko V. K.. 2005; Novel psychrophilic anaerobic spore-forming bacterium from the overcooled water brine in permafrost: description Clostridium algoriphilum sp. nov. Extremophiles9:239–246 [CrossRef][PubMed]
    [Google Scholar]
  22. Shi S., Zhang W. X., Deng Y., Zhong F. D., Hu F.. 2010; Construction of microbial fingerprint in Chinese liquor production by DGGE technique. China Brewing3:118–120 (In Chinese)
    [Google Scholar]
  23. Spring S., Merkhoffer B., Weiss N., Kroppenstedt R. M., Hippe H., Stackebrandt E.. 2003; Characterization of novel psychrophilic clostridia from an Antarctic microbial mat: description of Clostridium frigoris sp. nov., Clostridium lacusfryxellense sp. nov., Clostridium bowmanii sp. nov. and Clostridium psychrophilum sp. nov. and reclassification of Clostridium laramiense as Clostridium estertheticum subsp. laramiense subsp. nov. Int J Syst Evol Microbiol53:1019–1029 [CrossRef][PubMed]
    [Google Scholar]
  24. Suetin S. V., Shcherbakova V. A., Chuvilskaya N. A., Rivkina E. M., Suzina N. E., Lysenko A. M., Gilichinsky D. A.. 2009; Clostridium tagluense sp. nov., a psychrotolerant, anaerobic, spore-forming bacterium from permafrost. Int J Syst Evol Microbiol59:1421–1426 [CrossRef][PubMed]
    [Google Scholar]
  25. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. 2011; mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol28:2731–2739 [CrossRef][PubMed]
    [Google Scholar]
  26. Tao Y., Li J., Rui J., Xu Z., Zhou Y., Hu X., Wang X., Liu M., Li D., Li X.. 2014; Prokaryotic communities in pit mud from different-aged cellars used for the production of Chinese strong-flavored liquor. Appl Environ Microbiol80:2254–2260 [CrossRef][PubMed]
    [Google Scholar]
  27. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. 1997; The clustal_xwindows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res25:4876–4882 [CrossRef][PubMed]
    [Google Scholar]
  28. Tindall B. J., Sikorski J., Smibert R. A., Krieg N. R.. 2007; Phenotypic characterization and the principles of comparative systematics. In Methods for General and Molecular Microbiology pp330–393Edited by Reddy C. A., Beveridge T. J., Breznak J. A., Marzluf G. A., Schmidt T. M., Snyder L. R.. Washington, DC: American Society for Microbiology; [CrossRef]
    [Google Scholar]
  29. Tracy B. P., Jones S. W., Fast A. G., Indurthi D. C., Papoutsakis E. T.. 2012; Clostridia: the importance of their exceptional substrate and metabolite diversity for biofuel and biorefinery applications. Curr Opin Biotechnol23:364–381 [CrossRef][PubMed]
    [Google Scholar]
  30. UK-Standards-for-Microbiology-Investigations 2011; Identification of Clostridium species. In: https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/400746/ID_8i4.pdf
  31. Van Dyke M. I., McCarthy A. J.. 2002; Molecular biological detection and characterization of Clostridium populations in municipal landfill sites. Appl Environ Microbiol68:2049–2053 [CrossRef][PubMed]
    [Google Scholar]
  32. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D, Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C, Murray R. G. E, other authors. 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol37:463–464 [CrossRef]
    [Google Scholar]
  33. Wiegel J., Tanner R., Rainey F.. 2006; An Introduction to the Family Clostridiaceae . In The Prokaryotes, 3rd edn. pp654–678Edited by Dworkin M., Falkow S., Rosenberg E., Schleifer K.-H., Stackebrandt E.. New York: Springer; [CrossRef]
    [Google Scholar]
  34. Wilde E., Hippe H., Tosunoglu N., Schallehn G., Herwig K., Gottschalk G.. 1989; Clostridium tetanomorphum sp. nov., nom. rev. Int J Syst Bacteriol39:127–134 [CrossRef]
    [Google Scholar]
  35. Wilde E., Collins M. D., Hippe H.. 1997; Clostridium pascui sp. nov., a new glutamate-fermenting sporeformer from a pasture in Pakistan. Int J Syst Bacteriol47:164–170 [CrossRef][PubMed]
    [Google Scholar]
  36. Xu Y., Wang D., Fan W., Mu X., Chen J.. 2010; Traditional Chinese Biotechnology. In Biotechnology in China pp189–233Edited by Tsao G. T., Ouyang P., Chen J.. Berlin: Springer;
    [Google Scholar]
  37. Yang Z.. 1997; paml: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci13:555–556[PubMed]
    [Google Scholar]
  38. Zhao J.-S., Zheng J., Zhou R.-Q., Shi B.. 2012; Microbial community structure of pit mud in a Chinese strong aromatic liquor fermentation pit. J Inst Brew118:356–360 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000787
Loading
/content/journal/ijsem/10.1099/ijsem.0.000787
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error