1887

Abstract

A genome and physiological comparison was made of the type strains of species belonging to subgroup 1a and of ‘’ strain MI-1. Phenotypically, ‘’ strain MI-1 can be distinguished from the other described species of subgroup 1a by its ability to grow with propionate and butyrate. In addition, the strain is able to use a variety of metals as electron acceptors. Metal reduction has not been tested in the other species, but seems likely based on our genome analysis. Phylogenetic 16S rRNA gene sequence analysis and the average nucleotide identity between the genomes of the species of subgroup 1a show that strain MI-1 represents a novel species within the 1a subgroup, sp. nov. The type strain is MI-1.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000786
2016-02-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/2/762.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000786&mimeType=html&fmt=ahah

References

  1. Amin O., Fardeau M. L., Valette O., Hirschler-Réa A., Barbe V., Médigue C., Vacherie B., Ollivier B., Bertin P. N., Dolla A.. ( 2013;). Genome sequence of the sulfate-reducing bacterium Desulfotomaculum hydrothermale Lam5T. Genome Announc 1: e00114–12 [CrossRef] [PubMed].
    [Google Scholar]
  2. Aüllo T., Ranchou-Peyruse A., Ollivier B., Magot M.. ( 2013;). Desulfotomaculum spp. and related gram-positive sulfate-reducing bacteria in deep subsurface environments. Front Microbiol 4: 362 [CrossRef] [PubMed].
    [Google Scholar]
  3. Campbell L. L., Postgate J. R.. ( 1965;). Classification of the spore-forming sulfate-reducing bacteria. Bacteriol Rev 29: 359–363 [PubMed].
    [Google Scholar]
  4. Dalla Vecchia E., Shao P. P., Suvorova E., Chiappe D., Hamelin R., Bernier-Latmani R.. ( 2014;). Characterization of the surfaceome of the metal-reducing bacterium Desulfotomaculum reducens. Front Microbiol 5: 432 [CrossRef] [PubMed].
    [Google Scholar]
  5. Goris J., Konstantinidis K. T., Klappenbach J. A., Coenye T., Vandamme P., Tiedje J. M.. ( 2007;). DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 57: 81–91 [CrossRef] [PubMed].
    [Google Scholar]
  6. Haouari O., Fardeau M. L., Cayol J. L., Casiot C., Elbaz-Poulichet F., Hamdi M., Joseph M., Ollivier B.. ( 2008;). Desulfotomaculum hydrothermale sp. nov., a thermophilic sulfate-reducing bacterium isolated from a terrestrial Tunisian hot spring. Int J Syst Evol Microbiol 58: 2529–2535 [CrossRef] [PubMed].
    [Google Scholar]
  7. Ikeda M.. ( 2012;). Sugar transport systems in Corynebacterium glutamicum: features and applications to strain development. Appl Microbiol Biotechnol 96: 1191–1200 [CrossRef] [PubMed].
    [Google Scholar]
  8. Junier P., Frutschi M., Wigginton N. S., Schofield E. J., Bargar J. R., Bernier-Latmani R.. ( 2009;). Metal reduction by spores of Desulfotomaculum reducens. Environ Microbiol 11: 3007–3017 [CrossRef] [PubMed].
    [Google Scholar]
  9. Junier P., Junier T., Podell S., Sims D. R., Detter J. C., Lykidis A., Han C. S., Wigginton N. S., Gaasterland T., Bernier-Latmani R.. ( 2010;). The genome of the Gram-positive metal- and sulfate-reducing bacterium Desulfotomaculum reducens strain MI-1. Environ Microbiol 12: 2738–2754 [PubMed].
    [Google Scholar]
  10. Junier P., Dalla Vecchia E., Bernier-Latmani R.. ( 2011;). The response of Desulfotomaculum reducens MI-1 to U(IV) exposure: a transcriptomic study. Geomicrobiol J 28: 483–496 [CrossRef].
    [Google Scholar]
  11. Kaksonen A. H., Spring S., Schumann P., Kroppenstedt R. M., Puhakka J. A.. ( 2007a;). Desulfovirgula thermocuniculi gen. nov., sp. nov., a thermophilic sulfate-reducer isolated from a geothermal underground mine in Japan. Int J Syst Evol Microbiol 57: 98–102 [CrossRef] [PubMed].
    [Google Scholar]
  12. Kaksonen A. H., Spring S., Schumann P., Kroppenstedt R. M., Puhakka J. A.. ( 2007b;). Desulfurispora thermophila gen. nov., sp. nov., a thermophilic, spore-forming sulfate-reducer isolated from a sulfidogenic fluidized-bed reactor. Int J Syst Evol Microbiol 57: 1089–1094 [CrossRef] [PubMed].
    [Google Scholar]
  13. Klemps R., Cypionka H., Widdel F., Pfennig N.. ( 1985;). Growth with hydrogen, and further physiological characteristics of Desulfotomaculum species. Arch Microbiol 143: 203–208 [CrossRef].
    [Google Scholar]
  14. Kornberg H. L., Lambourne L. T., Sproul A. A.. ( 2000;). Facilitated diffusion of fructose via the phosphoenolpyruvate/glucose phosphotransferase system of Escherichia coli. Proc Natl Acad Sci U S A 97: 1808–1812 [CrossRef] [PubMed].
    [Google Scholar]
  15. Oren A., Garrity G. M.. ( 2005;). Notification of changes in taxonomic opinion previously published outside the IJSEM. Int J Syst Evol Microbiol 55: 7–8 [CrossRef] [PubMed].
    [Google Scholar]
  16. Otwell A. E., Sherwood R. W., Zhang S., Nelson O. D., Li Z., Lin H., Callister S. J., Richardson R. E.. ( 2015;). Identification of proteins capable of metal reduction from the proteome of the Gram-positive bacterium Desulfotomaculum reducens MI-1 using an NADH-based activity assay. Environ Microbiol 17: 1977–1990 [CrossRef] [PubMed].
    [Google Scholar]
  17. Parshina S. N., Sipma J., Nakashimada Y., Henstra A. M., Smidt H., Lysenko A. M., Lens P. N., Lettinga G., Stams A. J. M. ( 2005;). Desulfotomaculum carboxydivorans sp. nov., a novel sulfate-reducing bacterium capable of growth at 100% CO. Int J Syst Evol Microbiol 55: 2159–2165 [CrossRef] [PubMed].
    [Google Scholar]
  18. Richter M., Rosselló-Móra R.. ( 2009;). Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 106: 19126–19131 [CrossRef] [PubMed].
    [Google Scholar]
  19. Richter K., Schicklberger M., Gescher J.. ( 2012;). Dissimilatory reduction of extracellular electron acceptors in anaerobic respiration. Appl Environ Microbiol 78: 913–921 [CrossRef] [PubMed].
    [Google Scholar]
  20. Spring S., Visser M., Lu M., Copeland A., Lapidus A., Lucas S., Cheng J. F., Han C., Tapia R., other authors. ( 2012;). Complete genome sequence of the sulfate-reducing firmicute Desulfotomaculum ruminis type strain (DLT). Stand Genomic Sci 7: 304–319 [CrossRef] [PubMed].
    [Google Scholar]
  21. Stackebrandt E., Sproer C., Rainey F. A., Burghardt J., Päuker O., Hippe H.. ( 1997;). Phylogenetic analysis of the genus Desulfotomaculum: evidence for the misclassification of Desulfotomaculum guttoideum and description of Desulfotomaculum orientis as Desulfosporosinus orientis gen. nov., comb. nov. Int J Syst Bacteriol 47: 1134–1139 [CrossRef] [PubMed].
    [Google Scholar]
  22. Tebo B. M., Obraztsova A. Y.. ( 1998;). Sulfate-reducing bacterium grows with Cr(VI), U(VI), Mn(IV), and Fe(III) as electron acceptors. FEMS Microbiol Lett 162: 193–198 [CrossRef].
    [Google Scholar]
  23. Villemur R., Lanthier M., Beaudet R., Lépine F.. ( 2006;). The Desulfitobacterium genus. FEMS Microbiol Rev 30: 706–733 [CrossRef] [PubMed].
    [Google Scholar]
  24. Visser M., Parshina S. N., Alves J. I., Sousa D. Z., Pereira I. A. C, Muyzer G., Kuever J., Lebedinsky A. V., Koehorst J. J., other authors. ( 2014;). Genome analyses of the carboxydotrophic sulfate-reducers Desulfotomaculum nigrificans and Desulfotomaculum carboxydivorans and reclassification of Desulfotomaculum caboxydivorans as a later synonym of Desulfotomaculum nigrificans. Stand Genomic Sci 9: 655–675 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000786
Loading
/content/journal/ijsem/10.1099/ijsem.0.000786
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error