1887

Abstract

The bacterial strain N1-38 was isolated from ancient Siberian permafrost sediment. The strain was Gram-reaction-negative, motile by gliding, rod-shaped and psychrophilic, and showed good growth over a temperature range of − 5 to 25 °C. Phylogenetic analysis of 16S rRNA gene sequences revealed that strain N1-38 was most closely related to members of the genus and shared the highest 16S rRNA gene sequence similarities with the type strains of (99.3 %), (98.9 %) and (96.5 %). The predominant cellular fatty acids of strain N1-38 were summed feature 3 (Cω7 and/or iso-C 2-OH), C and Cω7. The major respiratory quinone was ubiquinone 8 and the major polar lipids were phosphatidylethanolamine and diphosphatidylglycerol. The genomic DNA G+C content was 53.0 mol%. Combined data of phenotypic, phylogenetic and DNA–DNA relatedness studies demonstrated that strain N1-38 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is N1-38 ( = LMG 28868 = CCOS 838). An emended description of the genus is also provided.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000783
2016-02-01
2020-04-02
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/2/744.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000783&mimeType=html&fmt=ahah

References

  1. Chung A. P., Tiago I., Nobre M. F., Veríssimo A., Morais P. V.. 2013; Glaciimonas singularis sp. nov., isolated from a uranium mine wastewater treatment plant. Int J Syst Evol Microbiol63:2344–2350 [CrossRef][PubMed]
    [Google Scholar]
  2. Collins M. D.. 1985; Isoprenoid quinone analysis in classification and identification. In Chemical Methods in Bacterial Systematics pp267–287Edited by Goodfellow M., Minnikin D. E.. London: Academic Press;
    [Google Scholar]
  3. De Ley J., Cattoir H., Reynaerts A.. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem12:133–142 [CrossRef][PubMed]
    [Google Scholar]
  4. Feller G., Gerday C.. 2003; Psychrophilic enzymes: hot topics in cold adaptation. Nat Rev Microbiol1:200–208 [CrossRef][PubMed]
    [Google Scholar]
  5. Frasson D., Udovičić M., Frey B., Lapanje A., Zhang D.-C., Margesin R., Sievers M.. 2015; Glaciimonas alpina sp. nov. isolated from alpine glaciers and reclassification of Glaciimonas immobilis Cr9-12 as the type strain of Glaciimonas alpina sp. nov. Int J Syst Evol Microbiol65:1779–1785 [CrossRef][PubMed]
    [Google Scholar]
  6. Huss V. A. R, Festl H., Schleifer K.-H.. 1983; Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol4:184–192 [CrossRef][PubMed]
    [Google Scholar]
  7. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H., other authors. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  8. Kuykendall L. D., Roy M. A., O'Neill J. J., Devine T. E.. 1988; Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int J Syst Bacteriol38:358–361 [CrossRef]
    [Google Scholar]
  9. Margesin R.. 2009; Effect of temperature on growth parameters of psychrophilic bacteria and yeasts. Extremophiles13:257–262 [CrossRef][PubMed]
    [Google Scholar]
  10. Margesin R., Schinner F., Marx J. C., Gerday C.(editors). 2008; Psychrophiles: from Biodiversity to Biotechnology Berlin: Springer; [CrossRef]
    [Google Scholar]
  11. Marmur J., Doty P.. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol5:109–118 [CrossRef][PubMed]
    [Google Scholar]
  12. Miller L. T.. 1982; Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol16:584–586[PubMed]
    [Google Scholar]
  13. Morita R. Y.. 1975; Psychrophilic bacteria. Bacteriol Rev39:144–167[PubMed]
    [Google Scholar]
  14. Saitou N., Nei M.. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol4:406–425[PubMed]
    [Google Scholar]
  15. Sambrook J., Frisch E. F., Maniatis T.. 1989; Molecular Cloning: a Laboratory Manual 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory
    [Google Scholar]
  16. Sasser M.. 1990; Identification of bacteria by gas chromatography of cellular fatty acids MIDI Technical Note 101 Newark, DE: MIDI Inc;
    [Google Scholar]
  17. Süßmuth R., Eberspächer J., Haag R., Springer W.. 1987; Biochemisch-mikrobiologisches Praktikum Stuttgart: Georg Thieme Verlag;
    [Google Scholar]
  18. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S.. 2013; mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  19. Tindall B. J.. 1990a; Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett66:199–202 [CrossRef]
    [Google Scholar]
  20. Tindall B. J.. 1990b; A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol13:128–130 [CrossRef]
    [Google Scholar]
  21. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D, Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C, Murray R. G. E, other authors. 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol37:463–464 [CrossRef]
    [Google Scholar]
  22. Wu C., Lu X., Qin M., Wang Y., Ruan J.. 1989; Analysis of menaquinone compound in microbial cells by HPLC. Microbiology [English translation of Microbiology (Beijing)]16:176–178
    [Google Scholar]
  23. Zhang D.-C., Schinner F., Margesin R.. 2010; Pedobacter bauzanensis sp. nov., isolated from soil. Int J Syst Evol Microbiol60:2592–2595 [CrossRef][PubMed]
    [Google Scholar]
  24. Zhang D.-C., Redzic M., Schinner F., Margesin R.. 2011; Glaciimonas immobilis gen. nov., sp. nov., a member of the family Oxalobacteraceae isolated from alpine glacier cryoconite. Int J Syst Evol Microbiol61:2186–2190 [CrossRef][PubMed]
    [Google Scholar]
  25. Zhang D.-C., Brouchkov A., Griva G., Schinner F., Margesin R.. 2013; Isolation and characterization of bacteria from ancient siberian permafrost sediment. Biology (Basel)2:85–106[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000783
Loading
/content/journal/ijsem/10.1099/ijsem.0.000783
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error