1887

Abstract

Two Gram-stain-positive, moderately thermophilic, endospore-forming, rod-shaped, motile bacteria designated PDF4 and PDF10, were isolated from Camkoy hot spring in the provinces of Aydın, Turkey and were characterized in order to determine their phylogenetic position. 16S rRNA gene sequence analysis revealed that the two strains belonged to the genus . Strain PDF4 showed highest 16S rRNA gene sequence similarity to strain PDF10 (99.5 %), DSM 30 (98.9 %), DSM 8376 (98.6 %) and DSM 9885 (98.5 %); similarities to other species of the genus were less than 98.5 %. The predominant fatty acids of strain PDF4 were anteiso-C (60.0 %) and iso-C (22.3 %). The polar lipids of strain PDF4 consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylmonomethylethanolamine, an unknown phospholipid, two unknown lipid, an unknown aminophospholipid and two unknown aminolipids. MK-7 was detected as a sole respiratory quinone, and the cell wall of strain PDF4 contained -diaminopimelic acid. The DNA G+C content of strain PDF4 was 51.7 mol%. DNA–DNA hybridization showed less than 60 % relatedness between strain PDF4 and type strains of the most closely related species given above. Based on these data, the two strains are considered to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is PDF4 ( = NCCB 100559 = DSM 100115).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000780
2016-02-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/2/712.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000780&mimeType=html&fmt=ahah

References

  1. Allan R. N., Lebbe L., Heyrman J., De Vos P., Buchanan C. J., Logan N. A.. ( 2005;). Brevibacillus levickii sp. nov. and Aneurinibacillus terranovensis sp. nov., two novel thermoacidophiles isolated from geothermal soils of northern Victoria Land, Antarctica. Int J Syst Evol Microbiol 55: 1039–1050 [CrossRef] [PubMed].
    [Google Scholar]
  2. Atlas R. M.. ( 1993;). Handbook of Microbiological Media. Edited by Parks L. C.. Boca Raton, FL: CRC Press;.
    [Google Scholar]
  3. Baek S.-H., Im W.-T., Oh H. W., Lee J.-S., Oh H.-M., Lee S.-T.. ( 2006;). Brevibacillus ginsengisoli sp. nov., a denitrifying bacterium isolated from soil of a ginseng field. Int J Syst Evol Microbiol 56: 2665–2669 [CrossRef] [PubMed].
    [Google Scholar]
  4. Beffa T., Blanc M., Lyon P. F., Vogt G., Marchiani M., Fischer J. L., Aragno M.. ( 1996;). Isolation of Thermus strains from hot composts (60 to 80°C). Appl Environ Microbiol 62: 1723–1727 [PubMed].
    [Google Scholar]
  5. Belduz A. O., Dulger S., Demirbag˘ Z.. ( 2003;). Anoxybacillus gonensis sp. nov., a moderately thermophilic, xylose-utilizing, endospore-forming bacterium. Int J Syst Evol Microbiol 53: 1315–1320 [CrossRef] [PubMed].
    [Google Scholar]
  6. Chun J., Lee J.-H., Jung Y., Kim M., Kim S., Kim B. K., Lim Y.-W.. ( 2007;). EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57: 2259–2261 [CrossRef] [PubMed].
    [Google Scholar]
  7. De Ley J., Cattoir H., Reynaerts A.. ( 1970;). The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12: 133–142 [CrossRef] [PubMed].
    [Google Scholar]
  8. Dussault H. P.. ( 1955;). An improved technique for staining red halophilic bacteria. J Bacteriol 70: 484–485 [PubMed].
    [Google Scholar]
  9. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17: 368–376 [CrossRef] [PubMed].
    [Google Scholar]
  10. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791 [CrossRef].
    [Google Scholar]
  11. Fitch W. M.. ( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20: 406–416 [CrossRef].
    [Google Scholar]
  12. Goto K., Fujita R., Kato Y., Asahara M., Yokota A.. ( 2004;). Reclassification of Brevibacillus brevis strains NCIMB 13288 and DSM 6472 ( = NRRL NRS-887) as Aneurinibacillus danicus sp. nov. and Brevibacillus limnophilus sp. nov. Int J Syst Evol Microbiol 54: 419–427 [CrossRef] [PubMed].
    [Google Scholar]
  13. Hall T. A.. ( 1999;). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41: 95–98.
    [Google Scholar]
  14. Huß V. A., Festl H., Schleifer K. H.. ( 1983;). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4: 184–192 [CrossRef] [PubMed].
    [Google Scholar]
  15. Inan K., Canakci S., Belduz A. O., Sahin F.. ( 2012;). Brevibacillus aydinogluensis sp. nov., a moderately thermophilic bacterium isolated from Karakoc hot spring. Int J Syst Evol Microbiol 62: 849–855 [CrossRef] [PubMed].
    [Google Scholar]
  16. Kimura M.. ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16: 111–120 [CrossRef] [PubMed].
    [Google Scholar]
  17. Komagata K., Suzuki K.. ( 1987;). Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19: 161–207 [CrossRef].
    [Google Scholar]
  18. Kuykendall L. D., Roy M. A., O'Neill J. J., Devine T. E.. ( 1988;). Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int J Syst Bacteriol 38: 358–361 [CrossRef].
    [Google Scholar]
  19. Logan N. A., Forsyth G., Lebbe L., Goris J., Heyndrickx M., Balcaen A., Verhelst A., Falsen E., Ljungh A., other authors. ( 2002;). Polyphasic identification of Bacillus and Brevibacillus strains from clinical, dairy and industrial specimens and proposal of Brevibacillus invocatus sp. nov. Int J Syst Evol Microbiol 52: 953–966 [CrossRef] [PubMed].
    [Google Scholar]
  20. Mandel M., Marmur J.. ( 1968;). Use of ultraviolet absorbance-temperature profile for determining the guanine plus cytosine content of DNA. Methods Enzymol 12B: 195–206 [CrossRef].
    [Google Scholar]
  21. Marmur J.. ( 1961;). A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3: 208–218 [CrossRef].
    [Google Scholar]
  22. Migula W.. ( 1900;). System der Bakterien2 Jena: Gustav Fisher;.
    [Google Scholar]
  23. Miller L. T.. ( 1982;). Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 16: 584–586 [PubMed].
    [Google Scholar]
  24. Posada D., Crandall K. A.. ( 1998;). MODELTEST: testing the model of DNA substitution. Bioinformatics 14: 817–818 [CrossRef] [PubMed].
    [Google Scholar]
  25. Posada D., Crandall K. A.. ( 2001;). Selecting the best-fit model of nucleotide substitution. Syst Biol 50: 580–601 [CrossRef] [PubMed].
    [Google Scholar]
  26. Powers E. M.. ( 1995;). Efficacy of the Ryu nonstaining KOH technique for rapidly determining gram reactions of food-borne and waterborne bacteria and yeasts. Appl Environ Microbiol 61: 3756–3758 [PubMed].
    [Google Scholar]
  27. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425 [PubMed].
    [Google Scholar]
  28. Shida O., Takagi H., Kadowaki K., Komagata K.. ( 1996;). Proposal for two new genera, Brevibacillus gen. nov. and Aneurinibacillus gen. nov. Int J Syst Bacteriol 46: 939–946 [CrossRef] [PubMed].
    [Google Scholar]
  29. Smibert R. M., Krieg N. R.. ( 1994;). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R.. Washington, DC: American Society for Microbiology;.
    [Google Scholar]
  30. Stackebrandt E., Goebel B. M.. ( 1994;). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44: 846–849 [CrossRef].
    [Google Scholar]
  31. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S.. ( 2013;). mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30: 2725–2729 [CrossRef] [PubMed].
    [Google Scholar]
  32. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25: 4876–4882 [CrossRef] [PubMed].
    [Google Scholar]
  33. Tindall B. J.. ( 1990a;). A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13: 128–130 [CrossRef].
    [Google Scholar]
  34. Tindall B. J.. ( 1990b;). Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 66: 199–202 [CrossRef].
    [Google Scholar]
  35. Tindall B. J., Sikorski J., Smibert R. A., Krieg N. R.. ( 2007;). Phenotypic characterization and the principles of comparative systematics. . In Methods for General and Molecular Microbiology, 3rd edn.., pp. 330–393. Edited by Reddy C. A., Beveridge T. J., Breznak J. A., Marzluf G., Schmidt T. M., Snyder L. R.. Washington, DC: American Society for Microbiology; [CrossRef].
    [Google Scholar]
  36. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D, Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C, Murray R. G. E, other authors. ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37: 463–464 [CrossRef].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000780
Loading
/content/journal/ijsem/10.1099/ijsem.0.000780
Loading

Data & Media loading...

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error