1887

Abstract

A Gram-stain-positive, aerobic, coccoid, non-motile, non-spore-forming bacterium, designated strain S3Af-1, was isolated from surface-sterilized bark of collected from Dongzhaigang National Nature Reserve in Hainan, China, and examined using a polyphasic approach to clarify its taxonomic position. This bacterium did not produce substrate mycelia or aerial hyphae, and no diffusible pigments were observed on the media tested. Strain S3Af-1 grew optimally without NaCl, at 28–30 °C and at pH 7.0.Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain S3Af-1 belonged to the genus and shared highest similarity with ‘’ BS6 (97.43 %) and CC-12602 (97.08 %). DNA–DNA hybridization results indicated that the level of relatedness between strain S3Af-1 and CC-12602 was less than 70 %. The DNA G+C content of strain S3Af-1 was 67.1 mol%. The cell-wall peptidoglycan contained -2,6-diaminopimelic acid. MK-9(H) and MK-9(H) were the predominant menaquinones. Phosphatidylglycerol, diphosphatidylglycerol, an unidentified glycolipid, two unidentified phospholipids and other lipids were detected in the polar lipid extracts. The major fatty acids were iso-C, anteiso-C and anteiso-C. On the basis of phylogenetic analysis, and phenotypic and chemotaxonomic characteristics, strain S3Af-1 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is S3Af-1 ( = DSM 100019 = CGMCC 4.7306).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000779
2016-01-01
2020-01-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/1/481.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000779&mimeType=html&fmt=ahah

References

  1. An D.-S., Im W.-T., Yoon M.-H.. 2008; Microlunatus panaciterrae sp. nov., a β-glucosidase-producing bacterium isolated from soil in a ginseng field. Int J Syst Evol Microbiol58:2734–2738 [CrossRef][PubMed]
    [Google Scholar]
  2. Cappuccino J. G., Sherman N.. 2002; Microbiology: a Laboratory Manual, 6th edn. San Francisco: Benjamin Cummings Pearson Education;
    [Google Scholar]
  3. Cheng J., Chen W., Huo-Zhang B., Nimaichand S., Zhou E.-M., Lu X.-H., Klenk H.-P., Li W.-J.. 2013; Microlunatus cavernae sp. nov., a novel actinobacterium isolated from Alu ancient cave, Yunnan, south-west China. Antonie van Leeuwenhoek104:95–101 [CrossRef][PubMed]
    [Google Scholar]
  4. Chun J., Lee J.-H., Jung Y., Kim M., Kim S., Kim B. K., Lim Y.-W.. 2007; EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol57:2259–2261 [CrossRef][PubMed]
    [Google Scholar]
  5. Cui Y.-S., Im W.-T., Yin C.-R., Yang D.-C., Lee S.-T.. 2007; Microlunatus ginsengisoli sp. nov., isolated from soil of a ginseng field. Int J Syst Evol Microbiol57:713–716 [CrossRef][PubMed]
    [Google Scholar]
  6. De Ley J., Cattoir H., Reynaerts A.. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem12:133–142 [CrossRef][PubMed]
    [Google Scholar]
  7. Felsenstein J.. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  8. Felsenstein J.. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution39:783–791 [CrossRef]
    [Google Scholar]
  9. Fitch W. M.. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool20:406–416 [CrossRef]
    [Google Scholar]
  10. Gonzalez C., Gutierrez C., Ramirez C.. 1978; Halobacterium vallismortis sp. nov. An amylolytic and carbohydrate-metabolizing, extremely halophilic bacterium. Can J Microbiol24:710–715 [CrossRef][PubMed]
    [Google Scholar]
  11. Hanada S., Nakamura K.. 2012; Genus VII. Microlunatus Nakamura, Hiraishi, Yoshimi, Kawaharasaki, Masuda and Kamagata 1995, 21VP . In Bergey's Manual of Systematic Bacteriology, 2nd edn.vol. 5 pp1168–1172Edited by Whitman W. B., Goodfellow M., Kämpfer P., Busse H.-J., Trujillo M. E., Ludwig W., Suzuki K.-I., Parte A.. New York: Springer;
    [Google Scholar]
  12. Kämpfer P., Young C. C., Busse H.-J., Chu J.-N., Schumann P., Arun A. B., Shen F.-T., Rekha P. D.. 2010a; Microlunatus soli sp. nov., isolated from soil. Int J Syst Evol Microbiol60:824–827 [CrossRef][PubMed]
    [Google Scholar]
  13. Kämpfer P., Schäfer J., Lodders N., Martin K.. 2010b; Microlunatus parietis sp. nov., isolated from an indoor wall. Int J Syst Evol Microbiol60:2420–2423 [CrossRef][PubMed]
    [Google Scholar]
  14. Kimura M.. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  15. Lee J.-J., Kim M. K.. 2012; Microlunatus terrae sp. nov., a bacterium isolated from soil. J Microbiol50:547–552 [CrossRef][PubMed]
    [Google Scholar]
  16. Li W.-J., Xu P., Schumann P., Zhang Y.-Q., Pukall R., Xu L.-H., Stackebrandt E., Jiang C.-L.. 2007; Georgenia ruanii sp. nov., a novel actinobacterium isolated from forest soil in Yunnan (China), and emended description of the genus Georgenia . Int J Syst Evol Microbiol57:1424–1428 [CrossRef][PubMed]
    [Google Scholar]
  17. Magee C. M., Rodeheaver G., Edgerton M. T., Edlich R. F.. 1975; A more reliable gram staining technic for diagnosis of surgical infections. Am J Surg130:341–346 [CrossRef][PubMed]
    [Google Scholar]
  18. Marmur J.. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol3:208–218 [CrossRef]
    [Google Scholar]
  19. Mesbah M., Premachandran U., Whitman W. B.. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol39:159–167 [CrossRef]
    [Google Scholar]
  20. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H.. 1984; An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods2:233–241 [CrossRef]
    [Google Scholar]
  21. Nakamura K., Hiraishi A., Yoshimi Y., Kawaharasaki M., Masuda K., Kamagata Y.. 1995; Microlunatus phosphovorus gen. nov., sp. nov., a new gram-positive polyphosphate-accumulating bacterium isolated from activated sludge. Int J Syst Bacteriol45:17–22 [CrossRef][PubMed]
    [Google Scholar]
  22. Qin S., Wang H. B., Chen H. H., Zhang Y. Q., Jiang C. L., Xu L. H., Li W. J.. 2008; Glycomyces endophyticus sp. nov., an endophytic actinomycete isolated from the root of Carex baccans Nees. Int J Syst Evol Microbiol58:2525–2528 [CrossRef][PubMed]
    [Google Scholar]
  23. Saitou N., Nei M.. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol4:406–425[PubMed]
    [Google Scholar]
  24. Sasser M.. 1990; Identification of bacteria by gas chromatography of cellular fatty acids MIDI Technical Note 101 Newark, DE: MIDI Inc;
    [Google Scholar]
  25. Schleifer K. H., Kandler O.. 1972; Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev36:407–477[PubMed]
    [Google Scholar]
  26. Shirling E. B., Gottlieb D.. 1966; Methods for characterization of Streptomyces species. Int J Syst Bacteriol16:313–340 [CrossRef]
    [Google Scholar]
  27. Stackebrandt E., Goebel B. M.. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol44:846–849[CrossRef]
    [Google Scholar]
  28. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. 2011; mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol28:2731–2739 [CrossRef][PubMed]
    [Google Scholar]
  29. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res25:4876–4882 [CrossRef][PubMed]
    [Google Scholar]
  30. Tuo L., Dong Y.-P., Habden X., Liu J.-M., Guo L., Liu X.-F., Chen L., Jiang Z.-K., Liu S.-W., other authors. 2015; Nocardioides deserti sp. nov., an actinobacterium isolated from desert soil. Int J Syst Evol Microbiol65:1604–1610 [CrossRef][PubMed]
    [Google Scholar]
  31. Waksman S. A.. 1961; Classification, Identification and Description of Genera and Speciesvol. 2 Baltimore: Williams & Wilkins;
    [Google Scholar]
  32. Wang Y.-X., Cai M., Zhi X.-Y., Zhang Y.-Q., Tang S.-K., Xu L.-H., Cui X.-L., Li W.-J.. 2008; Microlunatus aurantiacus sp. nov., a novel actinobacterium isolated from a rhizosphere soil sample. Int J Syst Evol Microbiol58:1873–1877 [CrossRef][PubMed]
    [Google Scholar]
  33. Wayne L., Brenner D., Colwell R., Grinont P., Kandler O., Krichevsky M., Moore L., Moore W., Murray R., Stackebtandt E.. 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematic. Int J Syst Evol Microbiol37:463–464[CrossRef]
    [Google Scholar]
  34. Xu P., Li W.-J., Tang S.-K., Zhang Y.-Q., Chen G.-Z., Chen H.-H., Xu L.-H., Jiang C.-L.. 2005; Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family ‘Oxalobacteraceae’ isolated from China. Int J Syst Evol Microbiol55:1149–1153 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000779
Loading
/content/journal/ijsem/10.1099/ijsem.0.000779
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error