1887

Abstract

A bacterial strain designated CAVIO was isolated during the course of a study of culturable bacteria in a riverbank soil sample from Tlaxcala, Mexico. The strain was subjected to a polyphasic taxonomic characterization. Strain CAVIO was aerobic, Gram-stain-negative, non-spore-forming and rod-shaped. Colonies grown on R2A agar at 28 °C were pale violet, mucoid, rounded, smooth and glossy. The strain was motile and catalase- and oxidase-positive, and maximum growth temperature was 35 °C. Strain CAVIO was classified within the genus as its 16S rRNA gene sequence was closely related to those of LP01 (97.5 % similarity), 16 (97.2 %) and 76 (97.1 %). The predominant respiratory quinone was Q8. The major fatty acids were summed feature 3 (Cω7Cω6), C and summed feature 8 (Cω7/Cω6). The predominant polar lipids were phosphatidylglycerol, phosphatidylethanolamine, diphosphatidylglycerol and an unknown phospholipid. The DNA G+C content was 65.0 mol% (Tm). DNA–DNA hybridization results showed values below 25 % with respect to the type strains of the closest related species. Therefore, strain CAVIO can be differentiated from previously described species of the genus and represents a novel species, for which the name sp. nov. is proposed. The type strain is CAVIO ( = CECT 8897 = LMG 28941).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000776
2016-02-01
2020-11-30
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/2/707.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000776&mimeType=html&fmt=ahah

References

  1. Chun J., Goodfellow M.. 1995; A phylogenetic analysis of the genus Nocardia with 16S rRNA gene sequences. Int J Syst Bacteriol45:240–245 [CrossRef][PubMed]
    [Google Scholar]
  2. Ezaki T., Hashimoto Y., Yabuuchi E.. 1989; Fluoromeric deoxyribonucleic acid-deoxyribonucleic acid acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol39:224–229 [CrossRef]
    [Google Scholar]
  3. Felsenstein J.. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  4. Felsenstein J.. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution39:783–791 [CrossRef]
    [Google Scholar]
  5. Gallego V., Sánchez-Porro C., García M. T., Ventosa A.. 2006; Massilia aurea sp. nov., isolated from drinking water. Int J Syst Evol Microbiol56:2449–2453 [CrossRef][PubMed]
    [Google Scholar]
  6. Hoffman C. S., Winston F.. 1987; A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli. Gene57:267–272 [CrossRef][PubMed]
    [Google Scholar]
  7. Kämpfer P., Lodders N., Martin K., Falsen E.. 2011; Revision of the genus Massilia La Scola et al. 2000, with an emended description of the genus and inclusion of all species of the genus Naxibacter as new combinations, and proposal of Massilia consociata sp. nov. Int J Syst Evol Microbiol61:1528–1533 [CrossRef][PubMed]
    [Google Scholar]
  8. Kämpfer P., Lodders N., Martin K., Falsen E.. 2012; Massilia oculi sp. nov., isolated from a human clinical specimen. Int J Syst Evol Microbiol62:364–369 [CrossRef][PubMed]
    [Google Scholar]
  9. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H., other authors. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  10. La Scola B., Birtles R. J., Mallet M. N., Raoult D.. 1998; Massilia timonaegen. nov., sp. nov., isolated from blood of an immunocompromised patient with cerebellar lesions. J Clin Microbiol36:2847–2852
    [Google Scholar]
  11. Lane D. J.. 1991; 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics pp115–175Edited by Stackebrandt E., Goodfellow M.. Chichester: Wiley;
    [Google Scholar]
  12. Larkin M. A., Blackshields G., Brown N. P., Chenna R., McGettigan P. A., McWilliam H., Valentin F., Wallace I. M., Wilm A., other authors. 2007; clustal w clustal_x version 2.0. Bioinformatics23:2947–2948 [CrossRef][PubMed]
    [Google Scholar]
  13. Luo X., Xie Q., Wang J., Pang H., Fan J., Zhang J.. 2013; Massilia lurida sp. nov., isolated from soil. Int J Syst Evol Microbiol63:2118–2123 [CrossRef][PubMed]
    [Google Scholar]
  14. Mandel M., Marmur J.. 1968; Use of ultraviolet absorbance temperature profile for determining the guanine plus cytosine content of DNA. Methods Enzymol 12B195–206 [CrossRef]
    [Google Scholar]
  15. Reasoner D. J., Geldreich E. E.. 1985; A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol49:1–7
    [Google Scholar]
  16. Rodríguez-Díaz M., Cerrone F., Sánchez-Peinado M., SantaCruz-Calvo L., Pozo C., López J. G.. 2014; Massilia umbonata sp. nov., able to accumulate poly-(-hydroxybutyrate, isolated from a sewage sludge compost-soil microcosm. Int J Syst Evol Microbiol64:131–137 [CrossRef][PubMed]
    [Google Scholar]
  17. Saitou N., Nei M.. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol4:(406)425
    [Google Scholar]
  18. Sasser M.. 1990; Identification of bacteria by gas chromatography of cellular fatty acids MIDI Technical Note 101 Newark, DE: MIDI Inc;
    [Google Scholar]
  19. Shen L., Liu Y., Gu Z., Xu B., Wang N., Jiao N., Liu H., Zhou Y.. 2015; Massilia eurypsychrophila sp. nov. a facultative psychrophilic bacteria isolated from ice core. Int J Syst Evol Microbiol65:2124–2129 [CrossRef]
    [Google Scholar]
  20. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S.. 2013; mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  21. Tindall B. J.. 1990a; A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol13:128–130 [CrossRef]
    [Google Scholar]
  22. Tindall B. J.. 1990b; Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett66:199–202 [CrossRef]
    [Google Scholar]
  23. Wang J., Zhang J., Pang H., Zhang Y., Li Y., Fan J.. 2012; Massilia flava sp. nov., isolated from soil. Int J Syst Evol Microbiol62:580–585 [CrossRef][PubMed]
    [Google Scholar]
  24. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D, Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C, Murray R. G. E, other authors. 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol37:463–464 [CrossRef]
    [Google Scholar]
  25. Weon H. Y., Kim B. Y., Son J. A., Jang H. B., Hong S. K., Go S. J., Kwon S. W.. 2008; Massilia aerilata sp. nov., isolated from an air sample. Int J Syst Evol Microbiol58:1422–1425 [CrossRef][PubMed]
    [Google Scholar]
  26. Willems A., Doignon-Bourcier F., Goris J., Coopman R., de Lajudie P., De Vos P., Gillis M.. 2001; DNA-DNA hybridization study of Bradyrhizobium strains. Int J Syst Evol Microbiol51:1315–1322 [CrossRef][PubMed]
    [Google Scholar]
  27. Zhang Y. Q., Li W. J., Zhang K. Y., Tian X. P., Jiang Y., Xu L. H., Jiang C. L., Lai R.. 2006; Massilia dura sp. nov., Massilia albidiflava sp. nov., Massilia plicata sp. nov. and Massilia lutea sp. nov., isolated from soils in China. Int J Syst Evol Microbiol56:459–463 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000776
Loading
/content/journal/ijsem/10.1099/ijsem.0.000776
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error