1887

Abstract

A Gram-stain-positive, strictly aerobic and rod-shaped bacterium, designated strain XA, was isolated from the moss, , and characterized by using a polyphasic taxonomic approach. The novel strain was non-spore-forming, non-motile, catalase-positive and oxidase-negative. Its optimal temperature for growth occurred at 28–30 °C and the optimum pH for growth was 7.0–7.5. The major fatty acids comprised anteiso-C, iso-C, ω-cyclohexyl-C and anteiso-C. The polar lipids contained diphosphatidylglycerol, phosphatidylglycerol, seven unidentified glycolipids, one unidentified phospholipid and one unidentified lipid. The major menaquinone was MK-11, followed by MK-10 and MK-12. The peptidoglycan type was B2γ and contained the amino acids 2,4-diaminobutyric acid, alanine, glycine, 3-hydroxy-glutamic acid and small amounts of glutamic acid. The genomic DNA G+C content of strain XA was 68.2 mol%. Strain XA exhibited highest 16S rRNA gene sequence similarity with 2Sb (96.3 %) and D7-27 (96.2 %). However, phylogenetic analyses showed that strain XA did not cluster with any species of the genera , or other genera of the family and the phylum . Based on 16S rRNA gene sequence analyses, and the phenotypic and chemotaxonomic data, strain XA is considered to represent a novel species of a novel genus, for which the name gen. nov., sp. nov. is proposed. The type strain is XA ( = CGMCC 1.15041 = DSM 29843).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000775
2016-02-01
2020-04-02
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/2/680.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000775&mimeType=html&fmt=ahah

References

  1. Dong X.-Z., Cai M.-Y.. 2001; Determination of biochemical properties. In Manual for the Systematic Identification of General Bacteria pp370–398 Beijing: Science Press (in Chinese);
    [Google Scholar]
  2. An S. Y., Xiao T., Yokota A.. 2008; Schumannella luteola gen. nov., sp. nov., a novel genus of the family Microbacteriaceae. J Gen Appl Microbiol54:253–258 [CrossRef][PubMed]
    [Google Scholar]
  3. An S. Y., Xiao T., Yokota A.. 2009; Leifsonia lichenia sp. nov., isolated from lichen in Japan. J Gen Appl Microbiol55:339–343 [CrossRef][PubMed]
    [Google Scholar]
  4. Breznak J. A., Costilow R. N.. 2007; Physicochemical factors in growth. In Methods for General and Molecular Bacteriology, 3rd edn. pp309–329Edited by Beveridge T. J., Breznak J. A., Marzluf G. A., Schmidt T. M., Snyder L. R.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  5. Felsenstein J.. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  6. Felsenstein J.. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution39:783–791 [CrossRef]
    [Google Scholar]
  7. Han S. K., Nedashkovskaya O. I., Mikhailov V. V., Kim S. B., Bae K. S.. 2003; Salinibacterium amurskyense gen. nov., sp. nov., a novel genus of the family Microbacteriaceae from the marine environment. Int J Syst Evol Microbiol53:2061–2066 [CrossRef][PubMed]
    [Google Scholar]
  8. Kämpfer P., Rainey F. A., Andersson M. A., Nurmiaho Lassila E. L., Ulrych U., Busse H. J., Weiss N., Mikkola R., Salkinoja-Salonen M.. 2000; Frigoribacterium faeni gen. nov., sp. nov., a novel psychrophilic genus of the family Microbacteriaceae. Int J Syst Evol Microbiol50:355–363 [CrossRef][PubMed]
    [Google Scholar]
  9. Kim B. C., Park D. S., Kim H., Oh H. W., Lee K. H., Shin K. S., Bae K. S.. 2012a; Herbiconiux moechotypicola sp. nov., a xylanolytic bacterium isolated from the gut of hairy long-horned toad beetles, Moechotypa diphysis (Pascoe). Int J Syst Evol Microbiol62:90–95 [CrossRef][PubMed]
    [Google Scholar]
  10. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H., other authors. 2012b; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  11. Kim S. J., Moon J. Y., Hamada M., Tamura T., Weon H. Y., Suzuki K., Kwon S. W.. 2013; Rudaibacter terrae gen. nov., sp. nov., isolated from greenhouse soil. Int J Syst Evol Microbiol63:4052–4057 [CrossRef][PubMed]
    [Google Scholar]
  12. Kim E. K., Hoang V. A., Kim Y. J., Nguyen N. L., Sukweenadhi J., Kang J. P., Yang D. C.. 2015; Humibacter ginsengiterrae sp. nov., and Humibacter ginsengisoli sp. nov., isolated from soil of a ginseng field. Int J Syst Evol Microbiol65:2734–2740 [CrossRef][PubMed]
    [Google Scholar]
  13. Lane D. J.. 1991; 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics pp115–175Edited by Stackebrandt E., Goodfellow M.. Chichester: Wiley;
    [Google Scholar]
  14. Lee S. D.. 2013; Humibacter antri sp. nov., an actinobacterium isolated from a natural cave, and emended description of the genus Humibacter. Int J Syst Evol Microbiol63:4315–4319 [CrossRef][PubMed]
    [Google Scholar]
  15. Madhaiyan M., Poonguzhali S., Lee J. S., Senthilkumar M., Lee K. C., Sundaram S.. 2010; Leifsonia soli sp. nov., a yellow-pigmented actinobacterium isolated from teak rhizosphere soil. Int J Syst Evol Microbiol60:1322–1327 [CrossRef][PubMed]
    [Google Scholar]
  16. Marmur J.. 1961; A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol3:208–218 [CrossRef]
    [Google Scholar]
  17. Mesbah M., Premachandran U., Whitman W. B.. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high performance liquid chromatography. Int J Syst Bacteriol39:159–167 [CrossRef]
    [Google Scholar]
  18. Nei M., Kumar S.. 2000; Molecular evolution and phylogenetics New York: Oxford University Press;
    [Google Scholar]
  19. Park Y. H., Suzuki K., Yim D. G., Lee K. C., Kim E., Yoon J., Kim S., Kho Y. H., Goodfellow M., Komagata K.. 1993; Suprageneric classification of peptidoglycan group B actinomycetes by nucleotide sequencing of 5S ribosomal RNA. Antonie van Leeuwenhoek64:307–313 [CrossRef][PubMed]
    [Google Scholar]
  20. Reasoner D. J., Geldreich E. E.. 1985; A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol49:1–7[PubMed]
    [Google Scholar]
  21. Ruijssenaars H. J., Hartmans S.. 2001; Plate screening methods for the detection of polysaccharase-producing microorganisms. Appl Microbiol Biotechnol55:143–149 [CrossRef][PubMed]
    [Google Scholar]
  22. Saitou N., Nei M.. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol4:406–425[PubMed]
    [Google Scholar]
  23. Sasser M.. 1990; Indentification of bacteria by gas chromatography of cellular fatty acids. USFCC News Lett20:16
    [Google Scholar]
  24. Schumann P.. 2011; Peptidoglycan structure. Methods Microbiol38:101–129 [CrossRef]
    [Google Scholar]
  25. Schumann P., Kämpfer P., Busse H.-J., Evtushenko L. I.. 2009; Proposed minimal standards for describing new genera and species of the suborder Micrococcineae. Int J Syst Evol Microbiol59:1823–1849 [CrossRef][PubMed]
    [Google Scholar]
  26. Smibert R. M., Krieg N. R.. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology pp607–654Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  27. Stackebrandt E., Rainey F. A., Ward-Rainey N. L.. 1997; Proposal for a new hierarchic classification system, Actinobacteria classis nov. Int J Syst Bacteriol47:479–491 [CrossRef]
    [Google Scholar]
  28. Takeuchi M., Hatano K.. 1998; Union of the genera Microbacterium Orla-Jensen and Aureobacterium Collins et al. in a redefined genus Microbacterium. Int J Syst Bacteriol48:739–747 [CrossRef][PubMed]
    [Google Scholar]
  29. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. 2011; mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol28:2731–2739 [CrossRef][PubMed]
    [Google Scholar]
  30. Thompson J. D., Higgins D. G., Gibson T. J.. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res22:4673–4680 [CrossRef][PubMed]
    [Google Scholar]
  31. Tindall B. J.. 1990a; A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol13:128–130 [CrossRef]
    [Google Scholar]
  32. Tindall B. J.. 1990b; Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett66:199–202 [CrossRef]
    [Google Scholar]
  33. Vaz-Moreira I., Nobre M. F., Ferreira A. C., Schumann P., Nunes O. C., Manaia C. M.. 2008; Humibacter albus gen. nov., sp. nov., isolated from sewage sludge compost. Int J Syst Evol Microbiol58:1014–1018 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000775
Loading
/content/journal/ijsem/10.1099/ijsem.0.000775
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error