1887

Abstract

A Gram-stain-positive, strictly aerobic and rod-shaped bacterium, designated strain XA, was isolated from the moss, , and characterized by using a polyphasic taxonomic approach. The novel strain was non-spore-forming, non-motile, catalase-positive and oxidase-negative. Its optimal temperature for growth occurred at 28–30 °C and the optimum pH for growth was 7.0–7.5. The major fatty acids comprised anteiso-C, iso-C, ω-cyclohexyl-C and anteiso-C. The polar lipids contained diphosphatidylglycerol, phosphatidylglycerol, seven unidentified glycolipids, one unidentified phospholipid and one unidentified lipid. The major menaquinone was MK-11, followed by MK-10 and MK-12. The peptidoglycan type was B2γ and contained the amino acids 2,4-diaminobutyric acid, alanine, glycine, 3-hydroxy-glutamic acid and small amounts of glutamic acid. The genomic DNA G+C content of strain XA was 68.2 mol%. Strain XA exhibited highest 16S rRNA gene sequence similarity with 2Sb (96.3 %) and D7-27 (96.2 %). However, phylogenetic analyses showed that strain XA did not cluster with any species of the genera , or other genera of the family and the phylum . Based on 16S rRNA gene sequence analyses, and the phenotypic and chemotaxonomic data, strain XA is considered to represent a novel species of a novel genus, for which the name gen. nov., sp. nov. is proposed. The type strain is XA ( = CGMCC 1.15041 = DSM 29843).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000775
2016-02-01
2019-10-13
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/2/680.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000775&mimeType=html&fmt=ahah

References

  1. Dong X.-Z., Cai M.-Y.. ( 2001;). Determination of biochemical properties. . In Manual for the Systematic Identification of General Bacteria, pp. 370–398 Beijing: Science Press (in Chinese);.
    [Google Scholar]
  2. An S. Y., Xiao T., Yokota A.. ( 2008;). Schumannella luteola gen. nov., sp. nov., a novel genus of the family Microbacteriaceae. J Gen Appl Microbiol 54: 253–258 [CrossRef] [PubMed].
    [Google Scholar]
  3. An S. Y., Xiao T., Yokota A.. ( 2009;). Leifsonia lichenia sp. nov., isolated from lichen in Japan. J Gen Appl Microbiol 55: 339–343 [CrossRef] [PubMed].
    [Google Scholar]
  4. Breznak J. A., Costilow R. N.. ( 2007;). Physicochemical factors in growth. . In Methods for General and Molecular Bacteriology, 3rd edn.., pp. 309–329. Edited by Beveridge T. J., Breznak J. A., Marzluf G. A., Schmidt T. M., Snyder L. R.. Washington, DC: American Society for Microbiology;.
    [Google Scholar]
  5. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17: 368–376 [CrossRef] [PubMed].
    [Google Scholar]
  6. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791 [CrossRef].
    [Google Scholar]
  7. Han S. K., Nedashkovskaya O. I., Mikhailov V. V., Kim S. B., Bae K. S.. ( 2003;). Salinibacterium amurskyense gen. nov., sp. nov., a novel genus of the family Microbacteriaceae from the marine environment. Int J Syst Evol Microbiol 53: 2061–2066 [CrossRef] [PubMed].
    [Google Scholar]
  8. Kämpfer P., Rainey F. A., Andersson M. A., Nurmiaho Lassila E. L., Ulrych U., Busse H. J., Weiss N., Mikkola R., Salkinoja-Salonen M.. ( 2000;). Frigoribacterium faeni gen. nov., sp. nov., a novel psychrophilic genus of the family Microbacteriaceae. Int J Syst Evol Microbiol 50: 355–363 [CrossRef] [PubMed].
    [Google Scholar]
  9. Kim B. C., Park D. S., Kim H., Oh H. W., Lee K. H., Shin K. S., Bae K. S.. ( 2012a;). Herbiconiux moechotypicola sp. nov., a xylanolytic bacterium isolated from the gut of hairy long-horned toad beetles, Moechotypa diphysis (Pascoe). Int J Syst Evol Microbiol 62: 90–95 [CrossRef] [PubMed].
    [Google Scholar]
  10. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H., other authors. ( 2012b;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62: 716–721 [CrossRef] [PubMed].
    [Google Scholar]
  11. Kim S. J., Moon J. Y., Hamada M., Tamura T., Weon H. Y., Suzuki K., Kwon S. W.. ( 2013;). Rudaibacter terrae gen. nov., sp. nov., isolated from greenhouse soil. Int J Syst Evol Microbiol 63: 4052–4057 [CrossRef] [PubMed].
    [Google Scholar]
  12. Kim E. K., Hoang V. A., Kim Y. J., Nguyen N. L., Sukweenadhi J., Kang J. P., Yang D. C.. ( 2015;). Humibacter ginsengiterrae sp. nov., and Humibacter ginsengisoli sp. nov., isolated from soil of a ginseng field. Int J Syst Evol Microbiol 65: 2734–2740 [CrossRef] [PubMed].
    [Google Scholar]
  13. Lane D. J.. ( 1991;). 16S/23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by Stackebrandt E., Goodfellow M.. Chichester: Wiley;.
    [Google Scholar]
  14. Lee S. D.. ( 2013;). Humibacter antri sp. nov., an actinobacterium isolated from a natural cave, and emended description of the genus Humibacter. Int J Syst Evol Microbiol 63: 4315–4319 [CrossRef] [PubMed].
    [Google Scholar]
  15. Madhaiyan M., Poonguzhali S., Lee J. S., Senthilkumar M., Lee K. C., Sundaram S.. ( 2010;). Leifsonia soli sp. nov., a yellow-pigmented actinobacterium isolated from teak rhizosphere soil. Int J Syst Evol Microbiol 60: 1322–1327 [CrossRef] [PubMed].
    [Google Scholar]
  16. Marmur J.. ( 1961;). A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 3: 208–218 [CrossRef].
    [Google Scholar]
  17. Mesbah M., Premachandran U., Whitman W. B.. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high performance liquid chromatography. Int J Syst Bacteriol 39: 159–167 [CrossRef].
    [Google Scholar]
  18. Nei M., Kumar S.. ( 2000;). Molecular evolution and phylogenetics New York: Oxford University Press;.
    [Google Scholar]
  19. Park Y. H., Suzuki K., Yim D. G., Lee K. C., Kim E., Yoon J., Kim S., Kho Y. H., Goodfellow M., Komagata K.. ( 1993;). Suprageneric classification of peptidoglycan group B actinomycetes by nucleotide sequencing of 5S ribosomal RNA. Antonie van Leeuwenhoek 64: 307–313 [CrossRef] [PubMed].
    [Google Scholar]
  20. Reasoner D. J., Geldreich E. E.. ( 1985;). A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol 49: 1–7 [PubMed].
    [Google Scholar]
  21. Ruijssenaars H. J., Hartmans S.. ( 2001;). Plate screening methods for the detection of polysaccharase-producing microorganisms. Appl Microbiol Biotechnol 55: 143–149 [CrossRef] [PubMed].
    [Google Scholar]
  22. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425 [PubMed].
    [Google Scholar]
  23. Sasser M.. ( 1990;). Indentification of bacteria by gas chromatography of cellular fatty acids. USFCC News Lett 20: 16.
    [Google Scholar]
  24. Schumann P.. ( 2011;). Peptidoglycan structure. Methods Microbiol 38: 101–129 [CrossRef].
    [Google Scholar]
  25. Schumann P., Kämpfer P., Busse H.-J., Evtushenko L. I.. ( 2009;). Proposed minimal standards for describing new genera and species of the suborder Micrococcineae. Int J Syst Evol Microbiol 59: 1823–1849 [CrossRef] [PubMed].
    [Google Scholar]
  26. Smibert R. M., Krieg N. R.. ( 1994;). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R.. Washington, DC: American Society for Microbiology;.
    [Google Scholar]
  27. Stackebrandt E., Rainey F. A., Ward-Rainey N. L.. ( 1997;). Proposal for a new hierarchic classification system, Actinobacteria classis nov. Int J Syst Bacteriol 47: 479–491 [CrossRef].
    [Google Scholar]
  28. Takeuchi M., Hatano K.. ( 1998;). Union of the genera Microbacterium Orla-Jensen and Aureobacterium Collins et al. in a redefined genus Microbacterium. Int J Syst Bacteriol 48: 739–747 [CrossRef] [PubMed].
    [Google Scholar]
  29. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28: 2731–2739 [CrossRef] [PubMed].
    [Google Scholar]
  30. Thompson J. D., Higgins D. G., Gibson T. J.. ( 1994;). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22: 4673–4680 [CrossRef] [PubMed].
    [Google Scholar]
  31. Tindall B. J.. ( 1990a;). A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13: 128–130 [CrossRef].
    [Google Scholar]
  32. Tindall B. J.. ( 1990b;). Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 66: 199–202 [CrossRef].
    [Google Scholar]
  33. Vaz-Moreira I., Nobre M. F., Ferreira A. C., Schumann P., Nunes O. C., Manaia C. M.. ( 2008;). Humibacter albus gen. nov., sp. nov., isolated from sewage sludge compost. Int J Syst Evol Microbiol 58: 1014–1018 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000775
Loading
/content/journal/ijsem/10.1099/ijsem.0.000775
Loading

Data & Media loading...

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error