1887

Abstract

A novel thermophilic, facultatively autotrophic bacterium, strain S2479, was isolated from a thermal spring located in a tidal zone of a geothermally heated beach (Kuril Islands, Russia). Cells of strain S2479 were rod-shaped and motile with a Gram-negative cell-wall type. The temperature range for growth was 35–68 °C (optimum 65 °C), and the pH range for growth was pH 5.5–8.8 (optimum pH 6.5). Growth of strain S2479 was observed in the presence of NaCl concentrations ranging from 0.5 to 3.5 % (w/v) (optimum 1.5–2.0 %). The strain oxidized sulfur and thiosulfate as sole energy sources for autotrophic growth under anaerobic conditions with nitrate as electron acceptor. Strain S2479 was also capable of heterotrophic growth by reduction of nitrate with oxidation of low-chain fatty acids and a limited number of other carboxylic acids or with complex proteinaceous compounds. Nitrate was reduced to N. Sulfur compounds were oxidized to sulfate. Strain S2479 did not grow aerobically during incubation at atmospheric concentration of oxygen but was able to grow microaerobically (1 % of oxygen in gas phase). Phylogenetic analysis based on 16S rRNA gene sequences indicated that the strain was a member of the family , order , class . On the basis of phylogenetic and phenotypic properties, strain S2479 represents a novel species of a new genus, for which the name gen. nov., sp. nov. is proposed. The type strain of the type species is S2479 ( = DSM 100275 = VKM B-2962).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000773
2016-02-01
2021-10-27
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/2/701.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000773&mimeType=html&fmt=ahah

References

  1. Benson D. A., Boguski M. S., Lipman D. J., Ostell J., Ouellette B. F., Rapp B. A., Wheeler D. L. 1999 GenBank. Nucleic Acids Res 27:12–17 [View Article][PubMed]
    [Google Scholar]
  2. Bonch-Osmolovskaya E. A., Sokolova T. G., Kostrikina N. A., Zavarzin G. A. 1990; Desulfurella acetivorans gen. nov. and sp. nov.-a new thermophilic sulfur-reducing eubacterium. Arch Microbiol 153:151–155 [View Article]
    [Google Scholar]
  3. Chaney A. L., Marbach E. P. 1962; Modified reagents for determination of urea and ammonia. Clin Chem 8:130–132[PubMed]
    [Google Scholar]
  4. Friedrich C. G., Rother D., Bardischewsky F., Quentmeier A., Fischer J. 2001; Oxidation of reduced inorganic sulfur compounds by bacteria: emergence of a common mechanism?. Appl Environ Microbiol 67:2873–2882 [View Article][PubMed]
    [Google Scholar]
  5. Gerhardt P., Murray R. G. E, Wood W. A., Krieg N. R. 1994 Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology;
    [Google Scholar]
  6. Ghosh W., Dam B. 2009; Biochemistry and molecular biology of lithotrophic sulfur oxidation by taxonomically and ecologically diverse bacteria and archaea. FEMS Microbiol Rev 33:999–1043 [View Article][PubMed]
    [Google Scholar]
  7. Hirayama H., Suzuki Y., Abe M., Miyazaki M., Makita H., Inagaki F., Uematsu K., Takai K. 2011; Methylothermus subterraneus sp. nov., a moderately thermophilic methanotroph isolated from a terrestrial subsurface hot aquifer. Int J Syst Evol Microbiol 61:2646–2653 [View Article][PubMed]
    [Google Scholar]
  8. Imhoff J. F. 2005; Order I. Chromatiales ord. nov.. In Bergey's Manual of Systematic Bacteriology, 2nd edn.. vol 2 part B pp 1–3Edited by Brenner D. J., Krieg N. R., Staley J. T., Garrity G. M. New York: Springer; [CrossRef]
    [Google Scholar]
  9. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H., other authors. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721 [View Article][PubMed]
    [Google Scholar]
  10. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mo1 Biol 4:109–118 [CrossRef]
    [Google Scholar]
  11. Mori K., Suzuki K., Yamaguchi K., Urabe T., Hanada S. 2015; Thiogranum longum gen. nov., sp. nov., an obligately chemolithoautotrophic, sulfur-oxidizing bacterium of the family Ectothiorhodospiraceae isolated from a deep-sea hydrothermal field, and an emended description of the genus Thiohalomonas . Int J Syst Evol Microbiol 65:235–241 [View Article][PubMed]
    [Google Scholar]
  12. Oren A. 2013; The family Ectothiorhodospiraceae . In The Prokaryotes. A Handbook on the Biology of Bacteria: Prokaryotic Communities and Ecophysiology, 4th edn. vol 6 pp 199–223Edited by Rosenberg E., DeLong E. F., Lory S., Stackebrandt E., Thompson F. Berlin: Springer;
    [Google Scholar]
  13. Ramana V. V., Sasikala C., Ramaprasad E. V. V, Ramana C. V. 2010; Description of Ectothiorhodospira salini sp. nov.. J Gen Appl Microbiol 56:313–319 [View Article][PubMed]
    [Google Scholar]
  14. Reysenbach A.-L. 2001; Order I. Aquificales ord. nov. In Bergey's Manual of Systematic Bacteriology vol 1 p 359Edited by Boone D. R., Castenholz R. W., Garrity G. M. New York: Springer; [CrossRef]
    [Google Scholar]
  15. Slobodkin A. I., Tourova T. P., Kuznetsov B. B., Kostrikina N. A., Chernyh N. A., Bonch-Osmolovskaya E. A. 1999; Thermoanaerobacter siderophilus sp. nov., a novel dissimilatory Fe(III)-reducing, anaerobic, thermophilic bacterium. Int J Syst Bacteriol 49:1471–1478 [View Article][PubMed]
    [Google Scholar]
  16. Slobodkin A. I., Reysenbach A.-L., Slobodkina G. B., Baslerov R. V., Kostrikina N. A., Wagner I. D., Bonch-Osmolovskaya E. A. 2012; Thermosulfurimonas dismutans gen. nov., sp. nov., an extremely thermophilic sulfur-disproportionating bacterium from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 62:2565–2571 [View Article][PubMed]
    [Google Scholar]
  17. Slobodkina G. B., Panteleeva A. N., Kostrikina N. A., Kopitsyn D. S., Bonch-Osmolovskaya E. A., Slobodkin A. I. 2013; Tepidibacillus fermentans gen. nov., sp. nov., a moderately thermophilic anaerobic and microaerophilic bacterium from an underground gas storage. Extremophiles 17:833–839 [View Article][PubMed]
    [Google Scholar]
  18. Sorokin D. Y., Lysenko A. M., Mityushina L. L., Tourova T. P., Jones B. E., Rainey F. A., Robertson L. A., Kuenen G. J. 2001; Thioalkalimicrobium aerophilum gen. nov., sp. nov. and Thioalkalimicrobium sibericum sp. nov., and Thioalkalivibrio versutus gen. nov., sp. nov., Thioalkalivibrio nitratis sp. nov. and Thioalkalivibrio denitrificans sp. nov., novel obligately alkaliphilic and obligately chemolithoautotrophic sulfur-oxidizing bacteria from soda lakes. Int J Syst Evol Microbiol 51:565–580 [View Article][PubMed]
    [Google Scholar]
  19. Sorokin D. Y., Muntyan M. S., Panteleeva A. N., Muyzer G. 2012; Thioalkalivibrio sulfidiphilus sp. nov., a haloalkaliphilic, sulfur-oxidizing gammaproteobacterium from alkaline habitats. Int J Syst Evol Microbiol 62:1884–1889 [View Article][PubMed]
    [Google Scholar]
  20. Stetter K. O. 1989; Order III. Sulfolobales ord. nov. Family Sulfolobaceae fam. nov.. In Bergey's Manual of Systematic Bacteriology vol 3 pp 2250–2251Edited by Staley J. T., Bryant M. P., Pfennig N., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  21. Tamura K., Nei M. 1993; Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526
    [Google Scholar]
  22. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. 2013; mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol . 30:2725–2729 [View Article][PubMed]
    [Google Scholar]
  23. Thiemann B., Imhoff J. F. 1996; Differentiation of Ectothiorhodospiraceae based on their fatty acid composition. Syst Appl Microbiol 19:223–230 [View Article]
    [Google Scholar]
  24. Trüper H. G., Schlegel H. G. 1964; Sulfur metabolism in Thiorhodaceae. I. Quantitative measurements on growing cells of Chromatium okenii . Antonie van Leeuwenhoek 30:225–238 [View Article][PubMed]
    [Google Scholar]
  25. Tsubota J., Eshinimaev B. Ts., Khmelenina V. N., Trotsenko Y. A. 2005; Methylothermus thermalis gen. nov., sp. nov., a novel moderately thermophilic obligate methanotroph from a hot spring in Japan. Int J Syst Evol Microbiol 55:1877–1884 [View Article][PubMed]
    [Google Scholar]
  26. Wolin E. A., Wolin M. J., Wolfe R. S. 1963; Formation of methane by bacterial extracts. J Biol Chem 238:2882–2886[PubMed]
    [Google Scholar]
  27. Zhilina T. N., Zavarzina D. G., Panteleeva A. N., Osipov G. A., Kostrikina N. A., Tourova T. P., Zavarzin G. A. 2012; Fuchsiella alkaliacetigena gen. nov., sp. nov., an alkaliphilic, lithoautotrophic homoacetogen from a soda lake. Int J Syst Evol Microbiol 62:1666–1673 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000773
Loading
/content/journal/ijsem/10.1099/ijsem.0.000773
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error