1887

Abstract

Two Gram-type-positive, non-spore-forming bacteria, strains D16/0/H6 and A22/0/F9_1, were isolated from Namibian semiarid savannah soils. 16S rRNA gene sequence analysis revealed 96.6 % identity between the two strains and placed them within the order of the class . The closest phylogenetic relatives with validly published names were several strains of the genus and the species , with pairwise sequence similarities of ≤ 94.0 %. Cells of strain D16/0/H6 were ovoid to rod-shaped, whereas strain A22/0/F9_1 formed regular rods. Cells of both strains were motile and divided by binary fission. Colonies were pink and white to pale yellowish/brownish, respectively. Strains D16/0/H6 and A22/0/F9_1 were aerobic, chemoheterotrophic mesophiles with broad temperature (13–43 and 17–43 °C, respectively) and pH (pH 4.5–8.5 and 5.0–9.5) ranges for growth. Complex proteinaceous substrates and glucose were the preferred carbon and energy sources. Strain A22/0/F9_1 also grew on various carboxylic acids. For both strains, the peptidoglycan diamino acid was -2,6-diaminopimelic acid. The major quinone was MK-8. As a minor compound, MK-7 occurred in strain D16/0/H6; strain A22/0F9_1 also contained MK-7, MK-7(H) and MK-8(H). Major fatty acids of strain D16/0/H6 were 10-methyl C, iso-C and Cω9. Strain A22/0F9_1 contained Cω9, Cω8, Cω6 and iso-C as major components. The DNA G+C contents of strains D16/0/H6 and A22/0/F9_1 were 72.8 and 74.0 mol%, respectively. Based on these characteristics, the two isolates are assigned to novel species of the new genus gen. nov., the type species sp. nov. (type strain D16/0/H6 = DSM 25205 = LMG 26950) and a second species sp. nov. (type strain A22/0/F9_1 = DSM 25204 = LMG 26949). As the novel genus and species cannot be clearly assigned to an established family within the order , the novel family fam. nov. is proposed. Emended descriptions of the classes and and their orders and families are also provided.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000770
2016-02-01
2020-09-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/2/652.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000770&mimeType=html&fmt=ahah

References

  1. Albuquerque L., França L., Rainey F. A., Schumann P., Nobre M. F., da Costa M. S.. 2011; Gaiella occulta gen. nov., sp. nov., a novel representative of a deep branching phylogenetic lineage within the class Actinobacteria and proposal of Gaiellaceae fam. nov. and Gaiellales ord. nov. Syst Appl Microbiol34:595–599 [CrossRef]
    [Google Scholar]
  2. Albuquerque L., Johnson M. M., Schumann P., Rainey F. A., da Costa M. S.. 2014; Description of two new thermophilic species of the genus Rubrobacter, Rubrobacter calidifluminis sp. nov. and Rubrobacter naiadicus sp. nov., and emended description of the genus Rubrobacter and the species Rubrobacter bracarensis . Syst Appl Microbiol37:235–243 [CrossRef]
    [Google Scholar]
  3. Almeida B., Vaz-Moreira I., Schumann P., Nunes O. C., Carvalho G., Crespo M. T. B. 2013; Patulibacter medicamentivorans sp. nov., isolated from activated sludge of a wastewater treatment plant. Int J Syst Evol Microbiol63:2588–2593 [CrossRef]
    [Google Scholar]
  4. An D.-S., Wang L., Kim M. S., Bae H.-M., Lee S.-T., Im W.-T.. 2011; Solirubrobacter ginsenosidimutans sp. nov., isolated from soil of a ginseng field. Int J Syst Evol Microbiol61:2606–2609 [CrossRef]
    [Google Scholar]
  5. Angle J. S., McGrath S. P., Chaney R. L.. 1991; New culture-medium containing ionic concentration of nutrients similar to concentrations found in the soil. Appl Environ Microbiol57:3674–3676
    [Google Scholar]
  6. Beveridge T. J., Lawrence J. R., Murray R. G. E. 2007; In Sampling and staining for light microscopy, 3rd edn. pp19–33Edited by Reddy C. A.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  7. Brosius J., Palmer M. L., Kennedy P. J., Noller H. F.. 1978; Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli . Proc Natl Acad Sci U S A75:4801–4805 [CrossRef]
    [Google Scholar]
  8. Buck J. D.. 1982; Nonstaining (KOH) method for determination of gram reactions of marine bacteria. Appl Environ Microbiol44:992–993
    [Google Scholar]
  9. Carreto L., Moore E., Nobre M. F., Wait R., Riley P. W., Sharp R. J., Da Costa M. S.. 1996; Rubrobacter xylanophilus sp. nov., a new thermophilic species isolated from a thermally polluted effluent. Int J Syst Bacteriol46:460–465 [CrossRef]
    [Google Scholar]
  10. Cashion P., Holder-Franklin M. A., McCully J., Franklin M.. 1977; A rapid method for base ratio determination of bacterial DNA. Anal Biochem81:461–466 [CrossRef]
    [Google Scholar]
  11. Cataldo D. A., Maroon M., Schrader L. E., Young V. L.. 1975; Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Commun Soil Sci Plant Anal6:71–80 [CrossRef]
    [Google Scholar]
  12. Chen M.-Y., Wu S.-H., Lin G.-H., Lu C.-P., Lin Y.-T., Chang W.-C., Tsay S.-S.. 2004; Rubrobacter taiwanensis sp. nov., a novel thermophilic, radiation-resistant species isolated from hot springs. Int J Syst Evol Microbiol54:1849–1855 [CrossRef]
    [Google Scholar]
  13. Collins M. D., Jones D.. 1981; Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implications. Microbiol Rev45:316–354
    [Google Scholar]
  14. Cowan S. T.. 1974; Cowan and Steel's Manual for the Identification of Medical Bacteria, 2nd edn. New York: Cambridge University Press;
    [Google Scholar]
  15. De Ley J., Cattoir H., Reynaerts A.. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem12:133–142 [CrossRef]
    [Google Scholar]
  16. Foesel B. U., Rohde M., Overmann J.. 2013; Blastocatella fastidiosa gen. nov., sp. nov., isolated from semiarid savanna soil - the first described species of Acidobacteria subdivision 4. Syst Appl Microbiol36:82–89 [CrossRef]
    [Google Scholar]
  17. Gadkari D.. 1984; Influence of herbicides Goltix and Sencor on nitrification. Zentralbl Mikrobiol139:623–631
    [Google Scholar]
  18. Harrigan W. F., McCance M. E.. 1966; Laboratory Methods in Microbiology London: Academic Press;
    [Google Scholar]
  19. Huber K. J., Wüst P. K., Rohde M., Overmann J., Foesel B. U.. 2014; Aridibacter famidurans gen. nov., sp. nov. and Aridibacter kavangonensis sp. nov., two novel members of subdivision 4 of the Acidobacteria isolated from semiarid savannah soil. Int J Syst Evol Microbiol64:1866–1875 [CrossRef]
    [Google Scholar]
  20. Huss V. A. R, Festl H., Schleifer K. H.. 1983; Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol4:184–192 [CrossRef]
    [Google Scholar]
  21. Jurado V., Miller A. Z., Alias-Villegas C., Laiz L., Saiz-Jimenez C.. 2012; Rubrobacter bracarensis sp. nov., a novel member of the genus Rubrobacter isolated from a biodeteriorated monument. Syst Appl Microbiol35:306–309 [CrossRef]
    [Google Scholar]
  22. Kämpfer P., Glaeser S. P., Busse H.-J., Abdelmohsen U. R., Hentschel U.. 2014; Rubrobacter aplysinae sp. nov., isolated from the marine sponge Aplysina aerophoba . Int J Syst Evol Microbiol64:705–709 [CrossRef]
    [Google Scholar]
  23. Kim M. K., Na J.-R., Lee T.-H., Im W.-T., Soung N.-K., Yang D.-C.. 2007; Solirubrobacter soli sp. nov., isolated from soil of a ginseng field. Int J Syst Evol Microbiol57:1453–1455 [CrossRef]
    [Google Scholar]
  24. Kim K. K., Lee K. C., Lee J.-S.. 2012; Patulibacter ginsengiterrae sp. nov., isolated from soil of a ginseng field, and an emended description of the genus Patulibacter . Int J Syst Evol Microbiol62:563–568 [CrossRef]
    [Google Scholar]
  25. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar, Buchner A., Lai T., Steppi S., other authors. 2004; arb: a software environment for sequence data. Nucleic Acids Res32:1363–1371 [CrossRef]
    [Google Scholar]
  26. Ludwig W., Euzéby J., Schumann P., Busse H.-J., Trujillo M. E., Kämpfer P., Whitman W. B.. 2012a; Road map of the phylum. In Bergey's Manual of Systematic Bacteriology, 2nd edn.vol 5 pp1–28Edited by Goodfellow M., Kämpfer P., Busse H.-J., Trujillo M. E., Suzuki K., Ludwig W., Whitman W. B.. New York: Springer; [CrossRef]
    [Google Scholar]
  27. Ludwig W., Euzéby J., Whitman W. B.. 2012b; Taxonomic outline of the phylum. In Bergey's Manual of Systematic Bacteriology, 2nd edn.vol 5Edited by Goodfellow M., Kämpfer P., Busse H.-J., Trujillo M. E., Suzuki K., Ludwig W., Whitman W. B.. New York: Springer; [CrossRef]
    [Google Scholar]
  28. Mesbah M., Premachandran U., Whitman W. B.. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol39:159–167 [CrossRef]
    [Google Scholar]
  29. Monciardini P., Cavaletti L., Schumann P., Rohde M., Donadio S.. 2003; Conexibacter woesei gen. nov., sp. nov., a novel representative of a deep evolutionary line of descent within the class Actinobacteria . Int J Syst Evol Microbiol53:569–576 [CrossRef]
    [Google Scholar]
  30. Reddy G. S. N, Garcia-Pichel F.. 2009; Description of Patulibacter americanus sp. nov., isolated from biological soil crusts, emended description of the genus Patulibacter Takahashi et al. 2006 and proposal of Solirubrobacterales ord. nov. and Thermoleophilales ord. nov. Int J Syst Evol Microbiol59:87–94 [CrossRef]
    [Google Scholar]
  31. Sasser M.. 1990; Identification of bacteria by gas chromatography of cellular fatty acids Technical Note no. 101 Newark, DE: MIDI Inc;
    [Google Scholar]
  32. Schumann P.. 2011; Peptidoglycan structure. Methods Microbiol38:101–129 [CrossRef]
    [Google Scholar]
  33. Seki T., Matsumoto A., Shimada R., Inahashi Y., O¯mura S., Takahashi Y.. 2012; Conexibacter arvalis sp. nov., isolated from a cultivated field soil sample. Int J Syst Evol Microbiol62:2400–2404 [CrossRef]
    [Google Scholar]
  34. Singleton D. R., Furlong M. A., Peacock A. D., White D. C., Coleman D. C., Whitman W. B.. 2003; Solirubrobacter pauli gen. nov., sp. nov., a mesophilic bacterium within the Rubrobacteridae related to common soil clones. Int J Syst Evol Microbiol53:485–490 [CrossRef]
    [Google Scholar]
  35. Smibert R. M., Krieg N. R.. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology pp607–657Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  36. Stackebrandt E.. 2004; Will we ever understand? The undescribable diversity of the prokaryotes. Acta Microbiol Immunol Hung51:449–462 [CrossRef]
    [Google Scholar]
  37. Stackebrandt E., Rainey F. A., Ward-Rainey N. L.. 1997; Proposal for a new hierarchic classification system, Actinobacteria classis nov. Int J Syst Bacteriol47:479–491 [CrossRef]
    [Google Scholar]
  38. Suzuki K.. 2012; Class V. Rubrobacteria class. nov. In Bergey's Manual of Systematic Bacteriology, 2nd edn.vol 5 pp2004–2009Edited by Goodfellow M., Kämpfer P., Busse H.-J., Trujillo M. E., Suzuki K., Ludwig W., Whitman W. B.. New York: Springer;[CrossRef]
    [Google Scholar]
  39. Suzuki K., Whitman W. B.. 2012; Class VI. Thermoleophilia class. nov. In Bergey's Manual of Systematic Bacteriology, 2nd edn.vol 5 pp2010–2028Edited by Goodfellow M., Kämpfer P., Busse H.-J., Trujillo M. E., Suzuki K., Ludwig W., Whitman W. B.. New York: Springer;[CrossRef]
    [Google Scholar]
  40. Suzuki K., Collins M. D., Iijima E., Komagata K.. 1988; Chemotaxonomic characterization of a radiotolerant bacterium, Arthrobacter radiotolerans: description of Rubrobacter radiotolerans gen. nov., comb. nov. FEMS Microbiol Lett52:33–39 [CrossRef]
    [Google Scholar]
  41. Tabatabai M. A.. 1992; Methods of measurements of sulfur in soils, plants, materials and water. In Sulfur Cycling on the Continents: Wetlands, Terrestrial Ecosystems and Associated Water Bodies (Scope 48) pp307–344Edited by Howarth R. W., Stewart J. W. B., Ivanov M. V.. Chichester: Wiley;
    [Google Scholar]
  42. Takahashi Y., Matsumoto A., Morisaki K., O¯mura S.. 2006; Patulibacter minatonensis gen. nov, sp. nov., a novel actinobacterium isolated using an agar medium supplemented with superoxide dismutase, and proposal of Patulibacteraceae fam. nov. Int J Syst Evol Microbiol56:401–406 [CrossRef]
    [Google Scholar]
  43. Tamaoka J., Komagata K.. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromato-graphy. FEMS Microbiol Lett25:125–128 [CrossRef]
    [Google Scholar]
  44. Tamura H., Goto K., Yotsuyanagi T., Nagayama M.. 1974; Spectrophotometric determination of iron(II) with 1,10-phenanthroline in presence of large amounts of iron(III). Talanta21:314–318 [CrossRef]
    [Google Scholar]
  45. Tepper E. Z., Korshunova G. F.. 1973; Taxonomic position of microorganisms of the Bactoderma group and their role in soil. Microbiology (English translation of Mikrobiologiia)42:430–434
    [Google Scholar]
  46. Thiagarajan V., Revathi R., Aparanjini K., Sivamani P., Girilal M., Priya C. S., Kalaichelvan P. T.. 2011; Extra cellular chitinase production by Streptomyces sp., PTK19 in submerged fermentation and its lytic activity on Fusarium oxysporum PTK2 cell wall. Int J Curr Sci1:30–44
    [Google Scholar]
  47. Tindall B. J.. 1990; Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett66:199–202 [CrossRef]
    [Google Scholar]
  48. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D, Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C, Murray R. G. E, other authors. 1987; Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol37:463–464 [CrossRef]
    [Google Scholar]
  49. Wei L., Ouyang S., Wang Y., Shen X., Zhang L.. 2014; Solirubrobacter phytolaccae sp. nov., an endophytic bacterium isolated from roots of Phytolacca acinosa Roxb. Int J Syst Evol Microbiol64:858–862 [CrossRef]
    [Google Scholar]
  50. Yarza P., Richter M., Peplies J., Euzeby J., Amann R., Schleifer K.-H., Ludwig W., Glöckner F. O., Rosselló-Móra R.. 2008; The All-Species Living Tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol31:241–250 [CrossRef]
    [Google Scholar]
  51. Yarza P., Spröer C., Swiderski J., Mrotzek N., Spring S., Tindall B. J., Gronow S., Pukall R., Klenk H.-P., other authors. 2013; Sequencing orphan species initiative (SOS): filling the gaps in the 16S rRNA gene sequence database for all species with validly published names. Syst Appl Microbiol36:69–73 [CrossRef]
    [Google Scholar]
  52. Zarilla K. A., Perry J. J.. 1984; Thermoleophilum album gen. nov. and sp. nov., a bacterium obligate for thermophily and n-alkane substrates. Arch Microbiol137:286–290 [CrossRef]
    [Google Scholar]
  53. Zarilla K. A., Perry J. J.. 1986; Deoxyribonucleic acid homology and other comparisons among obligately thermophilic hydrocarbonoclastic bacteria, with a proposal for Thermoleophilum minutum sp. nov. Int J Syst Bacteriol36:13–16 [CrossRef]
    [Google Scholar]
  54. Zhang L., Zhu L., Si M., Li C., Zhao L., Wei Y., Shen X.. 2014; Solirubrobacter taibaiensis sp. nov., isolated from a stem of Phytolacca acinosa Roxb. Antonie van Leeuwenhoek106:279–285 [CrossRef]
    [Google Scholar]
  55. Zhi X.-Y., Li W.-J., Stackebrandt E.. 2009; An update of the structure and 16S rRNA gene sequence-based definition of higher ranks of the class Actinobacteria, with the proposal of two new suborders and four new families and emended descriptions of the existing higher taxa. Int J Syst Evol Microbiol59:589–608 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000770
Loading
/content/journal/ijsem/10.1099/ijsem.0.000770
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error