1887

Abstract

An anaerobic bacterium, strain ZC-CMC3, was isolated from a wastewater sample in Zhejiang, China. Cells were Gram-stain-positive, peritrichous, non-spore-forming, rod-shaped (0.6–1.2 × 2.9–5.1 μm) and catalase- and oxidase-negative. Strain ZC-CMC3 was able to grow at 25–48 °C (optimum 43 °C) and pH 5.5–8.0 (optimum pH 7.0). The NaCl concentration range for growth was 0–3 % (w/v) (optimum 0 %). The major polar lipids of the isolate were diphosphatidylglycerol, phosphatidylglycerol, several phospholipids and glycolipids. Main fermentation products from PYG medium were formate, acetate, lactate and ethanol. Substrates which could be utilized were peptone, tryptone, yeast extract and beef extract. No respiratory quinone was detected. The main fatty acids were C, C, C 7 and C 9. The DNA G+C content was 30.0 mol%. 16S rRNA gene sequence analysis revealed that the isolate belonged to the family . Phylogenetically, the most closely related species were NH-JN4 (92.8 % 16S rRNA gene sequence similarity) and SG 508 (92.6 %). On the basis of phylogenetic, chemotaxonomic and phenotypic characteristics, strain ZC-CMC3 represents a novel species of a new genus in the family for which the name gen. nov., sp. nov. is proposed. The type strain of the type species is ZC-CMC3 ( = KCTC 15321 = JCM 19210 = CCTCC AB 2013104).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000765
2016-02-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/2/628.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000765&mimeType=html&fmt=ahah

References

  1. Collins M. D., Lawson P. A., Willems A., Cordoba J. J., Fernandez-Garayzabal J., Garcia P., Cai J., Hippe H., Farrow J. A. E. ( 1994;). The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int J Syst Bacteriol 44: 812–826 [CrossRef] [PubMed].
    [Google Scholar]
  2. Cui H. L., Gao X., Yang X., Xu X. W.. ( 2011;). Halolamina pelagica gen. nov., sp. nov., a new member of the family Halobacteriaceae. Int J Syst Evol Microbiol 61: 1617–1621 [CrossRef] [PubMed].
    [Google Scholar]
  3. Ehrlich G. G., Goerlitz D. F., Bourell J. H., Eisen G. V., Godsy E. M.. ( 1981;). Liquid chromatographic procedure for fermentation product analysis in the identification of anaerobic bacteria. Appl Environ Microbiol 42: 878–885 [PubMed].
    [Google Scholar]
  4. Fang M. X., Zhang W. W., Zhang Y. Z., Tan H. Q., Zhang X. Q., Wu M., Zhu X. F.. ( 2012;). Brassicibacter mesophilus gen. nov., sp. nov., a strictly anaerobic bacterium isolated from food industry wastewater. Int J Syst Evol Microbiol 62: 3018–3023 [CrossRef] [PubMed].
    [Google Scholar]
  5. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17: 368–376 [CrossRef] [PubMed].
    [Google Scholar]
  6. Fitch W. M.. ( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20: 406–416 [CrossRef].
    [Google Scholar]
  7. Hungate R. E.. ( 1969;). A roll tube method for cultivation of strict anaerobes. Methods Microbiol 3B 117–132 [CrossRef].
    [Google Scholar]
  8. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H., other authors. ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62: 716–721 [CrossRef] [PubMed].
    [Google Scholar]
  9. Kimura M.. ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16: 111–120 [CrossRef] [PubMed].
    [Google Scholar]
  10. Komagata K., Suzuki K.. ( 1987;). Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19: 161–207 [CrossRef].
    [Google Scholar]
  11. Kuykendall L. D., Roy M. A., O'Neill J. J., Devine T. E.. ( 1988;). Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int J Syst Bacteriol 38: 358–361 [CrossRef].
    [Google Scholar]
  12. Lane D. J.. ( 1991;). 16S/23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by Stackebrandt E., Goodfellow M.. Chichester: Wiley;.
    [Google Scholar]
  13. Marmur J., Doty P.. ( 1962;). Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5: 109–118 [CrossRef] [PubMed].
    [Google Scholar]
  14. Mesbah M., Whitman W. B.. ( 1989;). Measurement of deoxyguanosine/thymidine ratios in complex mixtures by high-performance liquid chromatography for determination of the mole percentage guanine + cytosine of DNA. J Chromatogr A 479: 297–306 [CrossRef] [PubMed].
    [Google Scholar]
  15. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H.. ( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2: 233–241 [CrossRef].
    [Google Scholar]
  16. Parte A. C.. ( 2014;). LPSN–list of prokaryotic names with standing in nomenclature. Nucleic Acids Res 42: (D1), D613–D616 [CrossRef] [PubMed].
    [Google Scholar]
  17. Pi R. X., Zhang W. W., Fang M. X., Zhang Y. Z., Li T. T., Wu M., Zhu X. F.. ( 2013;). Oceanirhabdus sediminicola gen. nov., sp. nov., an anaerobic bacterium isolated from sea sediment. Int J Syst Evol Microbiol 63: 4277–4283 [CrossRef] [PubMed].
    [Google Scholar]
  18. Powers E. M.. ( 1995;). Efficacy of the Ryu nonstaining KOH technique for rapidly determining gram reactions of food-borne and waterborne bacteria and yeasts. Appl Environ Microbiol 61: 3756–3758 [PubMed].
    [Google Scholar]
  19. Rezgui R., Ben Ali Gam Z., Ben Hamed S., Fardeau M. L., Cayol J. L., Maaroufi A., Labat M.. ( 2011;). Sporosalibacterium faouarense gen. nov., sp. nov., a moderately halophilic bacterium isolated from oil-contaminated soil. Int J Syst Evol Microbiol 61: 99–104 [CrossRef] [PubMed].
    [Google Scholar]
  20. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425 [PubMed].
    [Google Scholar]
  21. Slobodkina G. B., Kolganova T. V., Tourova T. P., Kostrikina N. A., Jeanthon C., Bonch-Osmolovskaya E. A., Slobodkin A. I.. ( 2008;). Clostridium tepidiprofundi sp. nov., a moderately thermophilic bacterium from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 58: 852–855 [CrossRef] [PubMed].
    [Google Scholar]
  22. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28: 2731–2739 [CrossRef] [PubMed].
    [Google Scholar]
  23. Wiegel J.. ( 2009;). Family I. Clostridiaceae Pribram 1933, 90AL. . In Bergey's Manual of Systematic Bacteriology, 3rd edn.., vol. 3, 736–741, 742, 746, 781–782, 787–788, 804. Edited by De Vos P., Garrity G. M., Jones D., Krieg N. R., Ludwig W., Rainey F. A., Schleifer K.-H., Whitman W. B.. New York: Springer;.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000765
Loading
/content/journal/ijsem/10.1099/ijsem.0.000765
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error