1887

Abstract

A Gram-reaction-variable, strictly aerobic, motile, rod-shaped bacterium, designated strain C4-5, was isolated from soil of a natural cave. Cells were oxidase- and catalase-positive and formed endospores in sporangia. The 16S rRNA gene sequence comparison showed that the organism formed a distinct clade within the genus and was most closely related to CKOBP-6 ( = KCTC 13623) (96.85 % 16S rRNA gene sequence similarity) followed by CAU 1005 ( = KCTC 33036) (94.82 %). The following chemotaxonomic features of strain C4-5 are typical for the genus : -diaminopimelic acid as the diagnostic diamino acid in the cell-wall peptidoglycan, MK-7 as the predominant menaquinone, the major fatty acids of anteiso-C, iso-C and C and the DNA G+C content of 54.8 mol%. The major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and four unidentified aminophospholipids. The phenotypic and phylogenetic data presented support that strain C4-5 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is C4-5 ( = KCTC 33652 = DSM 100100).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000762
2016-02-01
2021-08-01
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/2/598.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000762&mimeType=html&fmt=ahah

References

  1. Ash C., Priest F. G., Collins M. D. 1993; Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Proposal for the creation of a new genus Paenibacillus . Antonie van Leeuwenhoek 64:253–260 [View Article][PubMed]
    [Google Scholar]
  2. Chou J.-H., Lee J.-H., Lin M.-C., Chang P.-S., Arun A. B., Young C.-C., Chen W.-M. 2009; Paenibacillus contaminans sp. nov., isolated from a contaminated laboratory plate. Int J Syst Evol Microbiol 59:125–129 [View Article][PubMed]
    [Google Scholar]
  3. Collins M. D. 1985; Analysis of isoprenoid quinones. Methods Microbiol 18:329–366 [View Article]
    [Google Scholar]
  4. De Vos P., Ludwig W., Schleifer K. H., Whitman W. B. 2009; Family IV. Paenibacillaceae fam. nov. In Bergey's Manual of Systematic Bacteriology, 2nd edn. vol 3 p 269Edited by De Vos P., Garrity G. M., Jones D., Krieg N. R., Ludwig W., Rainey F., Schleifer K. H., Whitman W. B. New York: Springer;
    [Google Scholar]
  5. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376 [View Article][PubMed]
    [Google Scholar]
  6. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [View Article]
    [Google Scholar]
  7. Felsenstein J. 2002; PHYLIP (phylogeny inference package) version 3.6a. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle, USA..
  8. Fitch W. M. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416 [View Article]
    [Google Scholar]
  9. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism pp 21–132Edited by Munro H. N. New York: Academic Press; [CrossRef]
    [Google Scholar]
  10. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H., other authors. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721 [View Article] [View Article][PubMed]
    [Google Scholar]
  11. Kim J.-H., Kang H., Kim W. 2014; Paenibacillus doosanensis sp. nov., isolated from soil. Int J Syst Evol Microbiol 64:1271–1277 [View Article][PubMed]
    [Google Scholar]
  12. Kroppenstedt R. M. 1985; Fatty acid and menaquinone analysis of actinomycetes and related organisms. In Chemical Methods in Bacterial Systematics (Society for Applied Bacteriology Technical Series) vol 20 pp 173199Edited by Goodfellow M., Minnikin D. E. New York: Academic Press;
    [Google Scholar]
  13. Lane D. J. 1991; 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics pp 115–175Edited by Stackebrandt E., Goodfellow M. Chichester: Wiley;
    [Google Scholar]
  14. Lee S. D., Lee D. W. 2009; Scopulibacillus darangshiensis gen. nov., sp. nov., isolated from rock. J Microbiol 47:710–715 [View Article][PubMed]
    [Google Scholar]
  15. Logan N. A., Berge O., Bishop A. H., Busse H.-J., De Vos P., Fritze D., Heyndrickx M., Kämpfer P., Rabinovitch L., other authors. 2009; Proposed minimal standards for describing new taxa of aerobic, endospore-forming bacteria. Int J Syst Evol Microbiol 59:2114–2121 [View Article][PubMed]
    [Google Scholar]
  16. MacFaddin J. F. 1980 Biochemical Tests for Identification of Medical Bacteria, 2nd edn. Baltimore: Williams & Wilkins;
    [Google Scholar]
  17. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [View Article]
    [Google Scholar]
  18. Minnikin D. E., Patel P. V., Alshamaony L., Goodfellow M. 1977; Polar lipid composition in the classification of Nocardia and related bacteria. Int J Syst Bacteriol 27:104–117 [View Article]
    [Google Scholar]
  19. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H. 1984; An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241 [View Article]
    [Google Scholar]
  20. Priest F. G. 2009; Genus I. Paenibacillus Ash, Priest and Collins 1994. In Bergey's Manual of Systematic Bacteriology, 2nd edn. vol 3 pp 269–295Edited by De Vos P., Garrity G. M., Jones D., Krieg N. R., Ludwig W., Rainey F. A., Schleifer K. H., Whitman W. B. New York: Springer;
    [Google Scholar]
  21. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  22. Shida O., Takagi H., Kadowaki K., Nakamura L. K., Komagata K. 1997; Transfer of Bacillus alginolyticus, Bacillus chondroitinus, Bacillus curdlanolyticus, Bacillus glucanolyticus, Bacillus kobensis, and Bacillus thiaminolyticus to the genus Paenibacillus and emended description of the genus Paenibacillus . Int J Syst Bacteriol 47:289–298 [View Article][PubMed]
    [Google Scholar]
  23. Staneck J. L., Roberts G. D. 1974; Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 28:226–231[PubMed]
    [Google Scholar]
  24. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  25. Yao R., Wang R., Wang D., Su J., Zheng S., Wang G. 2014; Paenibacillus selenitireducens sp. nov., a selenite-reducing bacterium isolated from a selenium mineral soil. Int J Syst Evol Microbiol 64:805–811 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000762
Loading
/content/journal/ijsem/10.1099/ijsem.0.000762
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error