1887

Abstract

Strain YIM 78300, a novel Gram-stain-positive, moderately thermophilic, endospore-forming, rod-shaped, motile bacterium, was recovered from the sediment of a hot spring in the Tagejia Geothermal Field, Angren, Tibet province, western China. Optimum growth was observed at 50–55 °C, at pH 7.0 and with 0–1.5 % (w/v) NaCl. Phylogenetic analysis of the 16S rRNA gene sequence of strain YIM 78300 indicated that it belongs to the genus . Similarity levels between the 16S rRNA gene sequences of the new isolate and those of the type strains of members were 96.9–96.3 %; highest sequence similarity was with DSM 7064. The predominant menaquinone was MK-7 and the major cellular fatty acids were iso-C and iso-C. The major polar lipids were phosphatidyl--methylethanolamine, phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, two unidentified phospholipids, an unidentified aminophospholipid and two unidentified polar lipids. The G+C content of the genomic DNA of strain YIM 78300 was 57.9 mol%. Based on phylogenetic analyses, and physiological and biochemical characteristics, strain YIM 78300 is considered to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is YIM 78300 ( = DSM 29928 = CPCC 100738).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000752
2016-02-01
2019-12-11
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/2/548.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000752&mimeType=html&fmt=ahah

References

  1. Cerny G.. 1978; Studies on the aminopeptidase test for the distinction of gram-negative from gram-positive bacteria. Eur J Appl Microbiol Biotechnol5:113–122 [CrossRef]
    [Google Scholar]
  2. Collins M., Jones D.. 1980; Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2, 4-diaminobutyric acid. J Bacteriol48:459–470
    [Google Scholar]
  3. Collins M. D., Pirouz T., Goodfellow M., Minnikin D. E.. 1977; Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol100:221–230 [CrossRef][PubMed]
    [Google Scholar]
  4. Felsenstein J.. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  5. Felsenstein J.. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution39:783–791 [CrossRef]
    [Google Scholar]
  6. Fitch W. M.. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool20:406–416 [CrossRef]
    [Google Scholar]
  7. Gonzalez C., Gutierrez C., Ramirez C.. 1978; Halobacterium vallismortis sp. nov. An amylolytic and carbohydrate-metabolizing, extremely halophilic bacterium. Can J Microbiol24:710–715 [CrossRef][PubMed]
    [Google Scholar]
  8. Kelly 1964; Inter-Society Color Council – National Bureau of Standards Color Name Charts Illustrated with Centroid Colors Washington, DC: US Government Printing Office;
    [Google Scholar]
  9. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H., other authors. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  10. Kimura M.. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  11. Kovacs N.. 1956; Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature178:703 [CrossRef][PubMed]
    [Google Scholar]
  12. Kroppenstedt R. M.. 1982; Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded ion exchanger as stationary phases. J Liq Chiomatogr5:2359–2367 [CrossRef]
    [Google Scholar]
  13. Li W. J., Xu P., Schumann P., Zhang Y. Q., Pukall R., Xu L. H., Stackebrandt E., Jiang C. L.. 2007; Georgenia ruanii sp. nov., a novel actinobacterium isolated from forest soil in Yunnan (China), and emended description of the genus Georgenia. Int J Syst Evol Microbiol57:1424–1428 [CrossRef][PubMed]
    [Google Scholar]
  14. Logan N. A., De Vos P.. 2009; Genus IV. Brevibacillus Shida, Takagi, Kadowaki and Komagata 1996a, 942VP. In Bergey's Manual of Systematic Bacteriology, 2nd edn.vol 3 pp304–316Edited by DeVos P., Garrity G. M., Jones D., Krieg N. R., Ludwig W., Rainey F. A., Schleifer K. H., Whitman W. B.. New York: Springer;
    [Google Scholar]
  15. Manachini P., Fortina M., Parini C., Craveri R.. 1985; Bacillus thermoruber sp. nov., nom. rev., a red-pigmented thermophilic bacterium. Int J Syst Bacteriol35:493–496 [CrossRef]
    [Google Scholar]
  16. Mergaert J., Cnockaert M. C., Swings J.. 2002; Fulvimonas soli gen. nov., sp. nov., a gamma-proteobacterium isolated from soil after enrichment on acetylated starch plastic. Int J Syst Evol Microbiol52:1285–1289[PubMed]
    [Google Scholar]
  17. Mesbah M., Premachandran U., Whitman W. B.. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol39:159–167 [CrossRef]
    [Google Scholar]
  18. Minnikin D., Collins M., Goodfellow M.. 1979; Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. J Appl Bacteriol47:87–95 [CrossRef]
    [Google Scholar]
  19. Saitou N., Nei M.. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol4:406–425[PubMed]
    [Google Scholar]
  20. Sasser M.. 1990; Identification of bacteria by gas chromatography of cellular fatty acids MIDI Technical Note 101 Newark, DE: MIDI Inc;
    [Google Scholar]
  21. Shida O., Takagi H., Kadowaki K., Komagata K.. 1996; Proposal for two new genera, Brevibacillus gen. nov. and Aneurinibacillus gen. nov. Int J Syst Bacteriol46:939–946 [CrossRef][PubMed]
    [Google Scholar]
  22. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. 2011; mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol28:2731–2739 [CrossRef][PubMed]
    [Google Scholar]
  23. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res25:4876–4882 [CrossRef][PubMed]
    [Google Scholar]
  24. Waksman S. A.. 1967; The Actinomycetes: A Summary of Current Knowledge New York: The Ronald Press Co;
    [Google Scholar]
  25. Xu P., Li W. J., Tang S. K., Zhang Y. Q., Chen G. Z., Chen H. H., Xu L. H., Jiang C. L.. 2005; Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family ‘Oxalobacteraceae’ isolated from China. Int J Syst Evol Microbiol55:1149–1153 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000752
Loading
/content/journal/ijsem/10.1099/ijsem.0.000752
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error