1887

Abstract

A novel Gram-stain-positive, non-motile, moderately halophilic and alkalitolerant actinobacterium, designated EGI 80432, was isolated from a saline–alkaline soil of Xinjiang province, north-west China. Cells were non-endospore-forming cocci with a diameter of 0.5–0.8 μm. Strain EGI 80432 grew in the presence of 0–9 % (w/v) NaCl (optimum at 3–5 %), and also grew within the pH range 6.0–10.0 (optimum at pH 8.0–9.0) on marine 2216E medium. The peptidoglycan type was A1γ. The whole-cell hydrolysates contained glucose, galactose, mannose and three unknown sugars as major sugars. The predominant menaquinone was MK-9(H). The major fatty acids were Cω8, summed feature 3 (Cω7/Cω6), Cω9 and iso-C The polar lipids comprised diphosphatidylglycerol, phosphatidylglycerol, one unknown phosphoglycolipid, three unknown phospholipids and four unknown polar lipids. The genomic DNA G+C content was 75.2 mol%. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain EGI 80432 clustered within the radius of the class . Levels of sequence similarity between strain EGI 80432 and its phylogenetic neighbours ANL-iso2 and F10 were 94.1 and 88.1 %, respectively. Based on morphological, physiological and chemotaxonomic characteristics and phylogenetic analysis, a novel species of a new genus, gen. nov., sp. nov., is proposed, within the new family and new order fam. nov. and ord. nov. in the class . The type strain of is EGI 80432 ( = CGMCC 1.14988 = KCTC 33612).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000749
2016-02-01
2020-01-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/2/530.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000749&mimeType=html&fmt=ahah

References

  1. Collins M. D., Pirouz T., Goodfellow M., Minnikin D. E.. 1977; Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol100:221–230 [CrossRef][PubMed]
    [Google Scholar]
  2. Felsenstein J.. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  3. Felsenstein J.. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution39:783–789 [CrossRef]
    [Google Scholar]
  4. Fitch W. M.. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool20:406–416 [CrossRef]
    [Google Scholar]
  5. Goodfellow M.. 1971; Numerical taxonomy of some nocardioform bacteria. J Gen Microbiol69:33–80 [CrossRef][PubMed]
    [Google Scholar]
  6. Horikoshi K.. 1999; Alkaliphiles: some applications of their products for biotechnology. Microbiol Mol Biol Rev63:735–750[PubMed]
    [Google Scholar]
  7. Horikoshi K., Antranikian G., Bull A. T., Robb F. T., Stetter K. O.. 2011; Extremophiles: alkaliphiles. In Extremophiles Handbook pp17–251Edited by Horikoshi K., Antranikian G., Bull A. T., Robb F. T., Stetter K. O.. Berlin: Springer; [CrossRef]
    [Google Scholar]
  8. Kelly K. L.. 1964; Inter-Society Color Council – National Bureau of Standards Color Name Charts Illustrated with Centroid Colors Washington, DC: US Government Printing Office;
    [Google Scholar]
  9. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H., other authors. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  10. Kurahashi M., Fukunaga Y., Sakiyama Y., Harayama S., Yokota A.. 2010; Euzebya tangerina gen. nov., sp. nov., a deeply branching marine actinobacterium isolated from the sea cucumber Holothuria edulis, and proposal of Euzebyaceae fam. nov., Euzebyales ord. nov. and Nitriliruptoridae subclassis nov. Int J Syst Evol Microbiol60:2314–2319 [CrossRef][PubMed]
    [Google Scholar]
  11. Li W. J., Xu P., Schumann P., Zhang Y. Q., Pukall R., Xu L. H., Stackebrandt E., Jiang C. L.. 2007; Georgenia ruanii sp. nov., a novel actinobacterium isolated from forest soil in Yunnan (China), and emended description of the genus Georgenia. Int J Syst Evol Microbiol57:1424–1428 [CrossRef][PubMed]
    [Google Scholar]
  12. Ludwig W., Euzéby J., Schumann P., Busse H.-J., Trujillo M. E., Kämpfer P., Whitman W. B.. 2012; Road map of the phylum Actinobacteria. In Bergey's Manual of Systematic Bacteriology, 2nd edn.vol 5 pp1–28Edited by Whitman W., Goodfellow M., Kämpfer P., Busse H.-J., Trujillo M., Ludwig W., Suzuki K.. New York: Springer; [CrossRef]
    [Google Scholar]
  13. Marmur J.. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol3:208–218 [CrossRef]
    [Google Scholar]
  14. Mesbah M., Premachandran U., Whitman W. B.. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol39:159–167 [CrossRef]
    [Google Scholar]
  15. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal K., Parlett J. H.. 1984; An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods2:233–241 [CrossRef]
    [Google Scholar]
  16. Saitou N., Nei M.. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol4:406–425[PubMed]
    [Google Scholar]
  17. Sarethy I. P., Saxena Y., Kapoor A., Sharma M., Sharma S. K., Gupta V., Gupta S.. 2011; Alkaliphilic bacteria: applications in industrial biotechnology. J Ind Microbiol Biotechnol38:769–790 [CrossRef][PubMed]
    [Google Scholar]
  18. Sasser M.. 1990; Identification of bacteria by gas chromatography of cellular fatty acids MIDI Technical Note 101 Newwark, DE: MIDI Inc;
    [Google Scholar]
  19. Schleifer K. H., Kandler O.. 1972; Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev36:407–477[PubMed]
    [Google Scholar]
  20. Shirling E. B., Gottlieb D.. 1966; Methods for characterization of Streptomyces species. Int J Syst Bacteriol16:313–340 [CrossRef]
    [Google Scholar]
  21. Sorokin D. Y., van Pelt S., Tourova T. P., Evtushenko L. I.. 2009; Nitriliruptor alkaliphilus gen. nov., sp. nov., a deep-lineage haloalkaliphilic actinobacterium from soda lakes capable of growth on aliphatic nitriles, and proposal of Nitriliruptoraceae fam. nov. and Nitriliruptorales ord. nov. Int J Syst Evol Microbiol59:248–253 [CrossRef][PubMed]
    [Google Scholar]
  22. Stackebrandt E., Rainey F. A., Ward-Rainey N. L.. 1997; Proposal for a new hierarchic classification system, Actinobacteria classis nov. Int J Syst Bacteriol47:479–491 [CrossRef]
    [Google Scholar]
  23. Staneck J. L., Roberts G. D.. 1974; Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol28:226–231[PubMed]
    [Google Scholar]
  24. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S.. 2013; mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  25. Tang S.-K., Tian X.-P., Zhi X.-Y., Cai M., Wu J.-Y., Yang L.-L., Xu L.-H., Li W.-J.. 2008; Haloactinospora alba gen. nov., sp. nov., a halophilic filamentous actinomycete of the family Nocardiopsaceae. Int J Syst Evol Microbiol58:2075–2080 [CrossRef][PubMed]
    [Google Scholar]
  26. Tang S. K., Wang Y., Chen Y., Lou K., Cao L. L., Xu L. H., Li W. J.. 2009; Zhihengliuella alba sp. nov., and emended description of the genus Zhihengliuella. Int J Syst Evol Microbiol59:2025–2032 [CrossRef][PubMed]
    [Google Scholar]
  27. Williams S. T., Goodfellow M., Alderson G., Wellington E. M., Sneath P. H., Sackin M. J.. 1983; Numerical classification of Streptomyces and related genera. J Gen Microbiol129:1743–1813[PubMed]
    [Google Scholar]
  28. Xu P., Li W. J., Tang S. K., Zhang Y. Q., Chen G. Z., Chen H. H., Xu L. H., Jiang C. L.. 2005; Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family ‘Oxalobacteraceae’ isolated from China. Int J Syst Evol Microbiol55:1149–1153 [CrossRef][PubMed]
    [Google Scholar]
  29. Zhi X. Y., Li W. J., Stackebrandt E.. 2009; An update of the structure and 16S rRNA gene sequence-based definition of higher ranks of the class Actinobacteria, with the proposal of two new suborders and four new families and emended descriptions of the existing higher taxa. Int J Syst Evol Microbiol59:589–608 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000749
Loading
/content/journal/ijsem/10.1099/ijsem.0.000749
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error