1887

Abstract

Bacterial strain M19 was isolated from the gut of a wood-feeding termite, . Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain M19 was related to members of the genus , with sequence similarities ranging from 84.8 to 95.5 %. Comparison of housekeeping gene sequences revealed that strain M19 was well separated from JCM 16395 and 117. The isolate was Gram-stain-positive, catalase-negative and non-motile. Cells were coccoid or ovoid-shaped, and occurred singly, in pairs or as short chains. Growth of strain M19 occurred at 10–40 °C and at pH 5.0–7.5. The DNA G+C content of strain M19 was 39.6 mol% and the major fatty acids were C, cyclo-Cω8, Cω9, summed feature 7 and summed feature 8. Based on the phylogenetic, chemotaxonomic and phenotypic data presented, strain M19 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is M19 ( = CGMCC 1.15204 = NBRC 111537).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000743
2016-01-01
2020-09-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/1/518.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000743&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J.. 1990; Basic local alignment search tool. J Mol Biol215:403–410 [CrossRef][PubMed]
    [Google Scholar]
  2. Bauer S., Tholen A., Overmann J., Brune A.. 2000; Characterization of abundance and diversity of lactic acid bacteria in the hindgut of wood- and soil-feeding termites by molecular and culture-dependent techniques. Arch Microbiol173:126–137 [CrossRef][PubMed]
    [Google Scholar]
  3. Cai Y., Yang J., Pang H., Kitahara M.. 2011; Lactococcus fujiensis sp. nov., a lactic acid bacterium isolated from vegetable matter. Int J Syst Evol Microbiol61:1590–1594 [CrossRef][PubMed]
    [Google Scholar]
  4. Chen S. C., Lin Y. D., Liaw L. L., Wang P. C.. 2001; Lactococcus garvieae infection in the giant freshwater prawn Macrobranchium rosenbergii confirmed by polymerase chain reaction and 16S rDNA sequencing. Dis Aquat Organ45:45–52 [CrossRef][PubMed]
    [Google Scholar]
  5. Chen W., Wang B., Hong H., Yang H., Liu S.-J.. 2012; Deinococcus reticulitermitis sp. nov., isolated from a termite gut. Int J Syst Evol Microbiol62:78–83 [CrossRef][PubMed]
    [Google Scholar]
  6. Chen Y. S., Chang C. H., Pan S. F., Wang L. T., Chang Y. C., Wu H. C., Yanagida F.. 2013; Lactococcus taiwanensis sp. nov., a lactic acid bacterium isolated from fresh cummingcordia. Int J Syst Evol Microbiol63:2405–2409 [CrossRef][PubMed]
    [Google Scholar]
  7. Chen Y. S., Otoguro M., Lin Y. H., Pan S. F., Ji S. H., Yu C. R., Liou M. S., Chang Y. C., Wu H. C., Yanagida F.. 2014; Lactococcus formosensis sp. nov., a lactic acid bacterium isolated from yan-tsai-shin (fermented broccoli stems). Int J Syst Evol Microbiol64:146–151 [CrossRef][PubMed]
    [Google Scholar]
  8. Cho S. L., Nam S. W., Yoon J. H., Lee J. S., Sukhoom A., Kim W.. 2008; Lactococcus chungangensis sp. nov., a lactic acid bacterium isolated from activated sludge foam. Int J Syst Evol Microbiol58:1844–1849 [CrossRef][PubMed]
    [Google Scholar]
  9. Dong X. Z., Cai M.Y.(editors). 2001; Determination of biochemical properties. In Manual for the Systematic Identification of General Bacteria pp370–398 Beijing: Scientific Press (English translation);
    [Google Scholar]
  10. Duan Y., Tan Z., Wang Y., Li Z., Li Z., Qin G., Huo Y., Cai Y.. 2008; Identification and characterization of lactic acid bacteria isolated from Tibetan Qula cheese. J Gen Appl Microbiol54:51–60 [CrossRef][PubMed]
    [Google Scholar]
  11. Fang H., Lv W., Huang Z., Liu S. J., Yang H.. 2015; Gryllotalpicola reticulitermitis sp. nov., isolated from a termite gut. Int J Syst Evol Microbiol65:85–89 [CrossRef][PubMed]
    [Google Scholar]
  12. Felsenstein J.. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution39:783–791 [CrossRef]
    [Google Scholar]
  13. Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R.. 1994; Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology;
    [Google Scholar]
  14. Marmur J., Doty P.. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol5:109–118 [CrossRef][PubMed]
    [Google Scholar]
  15. Meucci A., Zago M., Rossetti L., Fornasari M. E., Bonvini B., Tidona F., Povolo M., Contarini G., Carminati D., Giraffa G.. 2015; Lactococcus hircilactis sp. nov. and Lactococcus laudensis sp. nov., isolated from milk. Int J Syst Evol Microbiol65:2091–2096 [CrossRef][PubMed]
    [Google Scholar]
  16. Olsen G. J., Matsuda H., Hagstrom R., Overbeek R.. 1994; fastDNAmL: a tool for construction of phylogenetic trees of DNA sequences using maximum likelihood. Comput Appl Biosci10:41–48[PubMed]
    [Google Scholar]
  17. Pérez T., Balcázar J. L., Peix A., Valverde A., Velázquez E., de Blas I., Ruiz-Zarzuela I.. 2011; Lactococcus lactis subsp. tructae subsp. nov. isolated from the intestinal mucus of brown trout (Salmo trutta) and rainbow trout (Oncorhynchus mykiss). Int J Syst Evol Microbiol61:1894–1898 [CrossRef][PubMed]
    [Google Scholar]
  18. Saitou N., Nei M.. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol4:406–425[PubMed]
    [Google Scholar]
  19. Sasser M.. 1990; Identification of bacteria by gas chromatography of cellular fatty acids MIDI Technical Note 101 Newark, DE: MIDI Inc;
    [Google Scholar]
  20. Schleifer K. H., Kraus J., Dvorak C., Kilpper-Balz R., Collins M. D., Fischer W.. 1985; Transfer of Streptococcus lactis and related streptococci to the genus Lactococcus gen. nov. Syst Appl Microbiol6:183–195 [CrossRef]
    [Google Scholar]
  21. Tamura K., Nei M.. 1993; Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol10:512–526[PubMed]
    [Google Scholar]
  22. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. 2011; mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol28:2731–2739 [CrossRef][PubMed]
    [Google Scholar]
  23. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res25:4876–4882 [CrossRef][PubMed]
    [Google Scholar]
  24. Wertz J. T., Kim E., Breznak J. A., Schmidt T. M., Rodrigues J. L. M.. 2012; Genomic and physiological characterization of the Verrucomicrobia isolate Diplosphaera colitermitum gen. nov., sp. nov., reveals microaerophily and nitrogen fixation genes. Appl Environ Microbiol78:1544–1555 [CrossRef][PubMed]
    [Google Scholar]
  25. Williams A. M., Fryer J. L., Collins M. D.. 1990; Lactococcus piscium sp. nov. a new Lactococcus species from salmonid fish. FEMS Microbiol Lett68:109–113 [CrossRef][PubMed]
    [Google Scholar]
  26. Wójcik M., Skórzyńska-Polit E., Tukiendorf A.. 2006; Organic acids accumulation and antioxidant enzyme activities in Thlaspi caerulescens under Zn and Cd stress. Plant Growth Regul48:145–155 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000743
Loading
/content/journal/ijsem/10.1099/ijsem.0.000743
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error