1887

Abstract

A strictly anaerobic, thermophilic and halotolerant strain, designated IA106, was isolated from the seepage water collected in a metal biocorrosion test at a depth of 490 m, in a 130–160 m thick, subterranean Callovo-Oxfordian clay formation (158–152 million years old) in northern France. This geological formation has been selected as the potential host rock for the French high-level nuclear waste repository. Cells of strain IA106 stained Gram-positive and were non-motile, spore-forming, straight rods (0.5 × 2–6 μm). The five major fatty acids were C (15.9 %), C (15.4 %), iso-C I and/or anteiso-C B(14.8 %), iso-C (14.7 %) and iso-C (13.0 %). Growth was observed at temperatures ranging from 55 to 70 °C and at pH 5.5–9. The salinity range for growth was 0–20 g NaCl 1. Yeast extract was required for growth. Strain IA106 was able to grow on lactate and various sugars in the presence of thiosulfate as electron acceptor. Sulfate, sulfite, elemental sulfur, fumarate, nitrate and nitrite were not reduced. The DNA G+C content was 60.2 mol%. 16S rRNA gene sequence analysis indicated that strain IA106 belonged to the family , class , phylum , and was most closely related to DSM 14490 (95.16 % 16S rRNA gene sequence similarity). On the basis of 16S rRNA gene sequence comparisons and physiological characteristics, strain IA106 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is IA106 ( = DSM 26576 = JCM 18718).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000739
2016-01-01
2020-01-24
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/1/445.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000739&mimeType=html&fmt=ahah

References

  1. Armand G., Noiret A., Zghondi J., Seyedi D. M.. 2013; Short- and long-term behaviors of drifts in the Callovo-Oxfordian claystone at the Meuse/Haute-Marne Underground Research Laboratory. J Rock Mech Geotech Eng5:221–230 [CrossRef]
    [Google Scholar]
  2. Armand G., Leveau F., Nussbaum C., De La Vaissiere R., Noiret A., Jaeggi D., Landrein P., Righini C.. 2014; Geometry and properties of the excavation-induced fractures at the Meuse/Haute-Marne URL Drifts. Rock Mech Rock Eng47:21–41 [CrossRef]
    [Google Scholar]
  3. Benson D. A., Boguski M. S., Lipman D. J., Ostell J., Ouellette B. F. F., Rapp B. A., Wheeler D. L.. 1999; GenBank. Nucleic Acids Res27:12–17 [CrossRef][PubMed]
    [Google Scholar]
  4. Boivin-Jahns V., Ruimy R., Bianchi A., Daumas S., Christen R.. 1996; Bacterial diversity in a deep-subsurface clay environment. Appl Environ Microbiol62:3405–3412[PubMed]
    [Google Scholar]
  5. Delay J., Bossart P., Ling X. L., Blechscmidt I., Ohlsson M., Vinsot A., Nussbaum C., Maes N.. 2014; Three decades of Underground Research Laboratories. What have we learned?. In Clays in Natural and Engineered Barriers for Radioactive Waste Confinement (Geological Society Special Publication 400) pp7–32Edited by Norris S., Bruno J., Cathelineau M., Delage P., Fairhurst C., Gaucher E. C., Höhn E. H., Kalinichev A., Lalieux P., Sellin P.. London: Geological Society; [CrossRef]
    [Google Scholar]
  6. Fardeau M. L., Ollivier B., Patel B. K. C., Magot M., Thomas P., Rimbault A., Rocchiccioli F., Garcia J. L.. 1997; Thermotoga hypogea sp. nov., a xylanolytic, thermophilic bacterium from an oil-producing well. Int J Syst Bacteriol47:1013–1019 [CrossRef][PubMed]
    [Google Scholar]
  7. Hall T. A.. 1999; BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser41:95–98
    [Google Scholar]
  8. Hungate R. E.. 1969; A roll tube method for the cultivation of strict anaerobes. Methods Microbiol3B:117–132 [CrossRef]
    [Google Scholar]
  9. Jukes T. H., Cantor C. R.. 1969; Evolution of protein molecules. In Mammalian Protein Metabolismvol. 3 pp21–132Edited by Munro H. N.. New York: Academic Press; [CrossRef]
    [Google Scholar]
  10. Kuykendall L. D., Roy M. A., O'Neill J. J., Devine T. E.. 1988; Fatty acids, antibiotic resistance and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int J Syst Bacteriol38:358–361 [CrossRef]
    [Google Scholar]
  11. Lerouge C., Grangeon S., Gaucher E. C., Tournassat C., Agrinier P., Guerrot C., Widory D., Fléhoc C., Wille G., other authors. 2011; Mineralogical and isotopic record of biotic and abiotic diagenesis of the Callovian–Oxfordian clayey formation of Bure (France). Geochim Cosmochim Acta75:2633–2663 [CrossRef]
    [Google Scholar]
  12. Maidak B. L., Cole J. R., Lilburn T. G., Parker C.T., Jr, Saxman P. R., Farris R. J., Garrity G. M., Olsen G. J., Schmidt T. M., Tiedje J. M.. 2001; The RDP-II (Ribosomal Database Project). Nucleic Acids Res29:173–174 [CrossRef][PubMed]
    [Google Scholar]
  13. Mesbah M., Premachandran U., Whitman W. B.. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol39:159–167 [CrossRef]
    [Google Scholar]
  14. Miller L. T.. 1982; Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol16:584–586[PubMed]
    [Google Scholar]
  15. Mohajerani M., Delage P., Sulem J., Monfared M., Tang A. M., Gatmiri B.. 2012; A laboratory investigation of thermally induced pore pressures in the Callovo-Oxfordian claystone. Int J Rock Mech Min Sci52:112–121 [CrossRef]
    [Google Scholar]
  16. Mori K., Hanada S., Maruyama A., Marumo K.. 2002; Thermanaeromonas toyohensis gen. nov., sp. nov., a novel thermophilic anaerobe isolated from a subterranean vein in the Toyoha Mines. Int J Syst Evol Microbiol52:1675–1680[PubMed]
    [Google Scholar]
  17. Pedersen K.. 2002; Microbial processes in the disposal of high level radioactive waste 500 m underground in Fennoscandian shield rocks. In Interactions of Microorganisms with Radionuclides (Radioactivity in the Environment vol. 2), [CrossRef] pp279–311Edited by Keith-Roach M. J., Livens F. R.. Amsterdam: Elsevier;
    [Google Scholar]
  18. Saitou N., Nei M.. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol4:406–425[PubMed]
    [Google Scholar]
  19. Sasser M.. 1990; Identification of bacteria by gas chromatography of cellular fatty acids MIDI Technical Note 101 Newark, DE: MIDI Inc;
    [Google Scholar]
  20. Stroes-Gascoyne S., Schippers A., Schwyn B., Poulain S., Sergeant C., Simonoff M., Le Marrec C., Altmann S., Nagaoka T., other authors. 2007; Microbial community analysis of Opalinus Clay drill core samples from the Mont Terri Underground Research Laboratory, Switzerland. Geomicrobiol J24:1–17 [CrossRef]
    [Google Scholar]
  21. Widdel F., Pfennig N.. 1981; Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. I. Isolation of new sulfate-reducing bacteria enriched with acetate from saline environments. Description of Desulfobacter postgatei gen. nov., sp. nov. Arch Microbiol129:395–400 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000739
Loading
/content/journal/ijsem/10.1099/ijsem.0.000739
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error