1887

Abstract

Two extremely halophilic archaea, strains Cb34 and C170, belonging to the genus , were isolated from the brine of the hypersaline lake Aran-Bidgol in Iran. Cells of the two strains were motile, pleomorphic rods, stained Gram-variable and produced red-pigmented colonies. Strains Cb34 and C170 required 25 % (w/v) salts, pH 7.0 and 37 °C for optimal growth under aerobic conditions; 0.3 M Mg was required. Cells of both isolates were lysed in distilled water and hypotonic treatment with < 10 % NaCl provoked cell lysis. Phylogenetic analysis based on 16S rRNA gene sequence similarities showed that these two strains were closely related to B31 (98.8 %) and other members of the genus . In addition, studies based on the ′ gene revealed that strains Cb34 and C170 are placed among the species of and are closely related to B31, with ′ gene sequence similarity less than or equal to 95.7 %. The polar lipid patterns of both strains consisted of phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, phosphatidylglycerol sulfate and sulfated mannosyl glucosyl diether. The DNA G+C content was 62.1–62.4 mol%. DNA–DNA hybridization studies confirmed that strains Cb34 and C170 constitute a distinct species. Data obtained in this study show that the two strains represent a novel species, for which the name sp. nov. is proposed. The type strain is Cb34 ( = CECT 8745 = IBRC-M 10233).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000738
2016-01-01
2021-10-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/1/435.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000738&mimeType=html&fmt=ahah

References

  1. Akaike H. 1974; A new look at the statistical model identification. IEEE Trans Automat Contr 19:716–723 [View Article]
    [Google Scholar]
  2. Allers T., Ngo H. P., Mevarech M., Lloyd R. G. 2004; Development of additional selectable markers for the halophilic archaeon Haloferax volcanii based on the leuB and trpA genes. Appl Environ Microbiol 70:943–953 [View Article][PubMed]
    [Google Scholar]
  3. Amoozegar M. A., Makhdoumi-Kakhki A., Shahzadeh Fazeli S. A., Azarbaijani R., Ventosa A. 2012; Halopenitus persicus gen. nov., sp. nov., an archaeon from an inland salt lake. Int J Syst Evol Microbiol 62:1932–1936 [View Article][PubMed]
    [Google Scholar]
  4. Amoozegar M. A., Makhdoumi-Kakhki A., Mehrshad M., Fazeli S. A., Ventosa A. 2013; Halopenitus malekzadehii sp. nov., an extremely halophilic archaeon isolated from a salt lake. Int J Syst Evol Microbiol 63:3232–3236 [View Article][PubMed]
    [Google Scholar]
  5. Amoozegar M. A., Makhdoumi-Kakhki A., Mehrshad M., Fazeli S. A., Spröer C., Ventosa A. 2014a; Halorientalis persicus sp. nov., an extremely halophilic archaeon isolated from a salt lake and emended description of the genus Halorientalis . Int J Syst Evol Microbiol 64:940–944 [View Article][PubMed]
    [Google Scholar]
  6. Amoozegar M. A., Makhdoumi-Kakhki A., Mehrshad M., Riazi S., Ventosa A. 2014b; Halovivax limisalsi sp. nov., an extremely halophilic archaeon from hypersaline mud. Int J Syst Evol Microbiol 64:3422–3426 [View Article][PubMed]
    [Google Scholar]
  7. Amoozegar M. A., Makhdoumi-Kakhki A., Mehrshad M., Rasooli M., Fazeli S. A., Spröer C., Ventosa A. 2015; Halovivax cerinus sp. nov., an extremely halophilic archaeon from a hypersaline lake. Int J Syst Evol Microbiol 65:65–70 [View Article][PubMed]
    [Google Scholar]
  8. Angelini R., Corral P., Lopalco P., Ventosa A., Corcelli A. 2012; Novel ether lipid cardiolipins in archaeal membranes of extreme haloalkaliphiles. Biochim Biophys Acta 1818:1365–1373 [View Article][PubMed]
    [Google Scholar]
  9. Arahal D. R., Dewhirst F. E., Paster B. J., Volcani B. E., Ventosa A. 1996; Phylogenetic analyses of some extremely halophilic archaea isolated from Dead Sea water, determined on the basis of their 16S rRNA sequences. Appl Environ Microbiol 62:3779–3786[PubMed]
    [Google Scholar]
  10. Barrow G. I., Feltham R. K. A. 2003 Cowan and Steel's Manual for the Identification of Medical Bacteria, 3rd edn. Cambridge: Cambridge University Press;
    [Google Scholar]
  11. Bauer A. W., Kirby W. M. M., Sherris J. C., Turck M. 1966; Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 45:493–496[PubMed]
    [Google Scholar]
  12. Boucher Y., Douady C. J., Sharma A. K., Kamekura M., Doolittle W. F. 2004; Intragenomic heterogeneity and intergenomic recombination among haloarchaeal rRNA genes. J Bacteriol 186:3980–3990 [View Article][PubMed]
    [Google Scholar]
  13. Corcelli A., Lobasso S. 2006; Characterization of lipids of halophilic archaea. Methods Microbiol 35:585–613 [View Article]
    [Google Scholar]
  14. Corral P., Gutiérrez M. C., Castillo A. M., Domínguez M., Lopalco P., Corcelli A., Ventosa A. 2013; Natronococcus roseus sp. nov., a haloalkaliphilic archaeon from a hypersaline lake. Int J Syst Evol Microbiol 63:104–108 [View Article][PubMed]
    [Google Scholar]
  15. Cui H. L., Tohty D., Zhou P. J., Liu S. J. 2006; Halorubrum lipolyticum sp. nov. and Halorubrum aidingense sp. nov., isolated from two salt lakes in Xin-Jiang, China. Int J Syst Evol Microbiol 56:1631–1634 [View Article][PubMed]
    [Google Scholar]
  16. Darriba D., Taboada G. L., Doallo R., Posada D. 2012; jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772 [View Article][PubMed]
    [Google Scholar]
  17. DeLong E. F. 1992; Archaea in coastal marine environments. Proc Natl Acad Sci U S A 89:5685–5689 [View Article][PubMed]
    [Google Scholar]
  18. Dussault H. P. 1955; An improved technique for staining red halophilic bacteria. J Bacteriol 70:484–485[PubMed]
    [Google Scholar]
  19. Dyall-Smith M. 2009 The Halohandbook: Protocols for Haloarchaeal Genetics version 7.2 http://www.haloarchaea.com/resources/halohandbook/
    [Google Scholar]
  20. Edgar R. C. 2004; muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797 [View Article][PubMed]
    [Google Scholar]
  21. Enache M., Itoh T., Fukushima T., Usami R., Dumitru L., Kamekura M. 2007; Phylogenetic relationships within the family Halobacteriaceae inferred from rpoB′ gene and protein sequences. Int J Syst Evol Microbiol 57:2289–2295 [View Article][PubMed]
    [Google Scholar]
  22. Fan H., Xue Y., Ma Y., Ventosa A., Grant W. D. 2004; Halorubrum tibetense sp. nov., a novel haloalkaliphilic archaeon from Lake Zabuye in Tibet, China. Int J Syst Evol Microbiol 54:1213–1216 [View Article][PubMed]
    [Google Scholar]
  23. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [View Article]
    [Google Scholar]
  24. Feng J., Zhou P., Zhou Y. G., Liu S. J., Warren-Rhodes K. 2005; Halorubrum alkaliphilum sp. nov., a novel haloalkaliphile isolated from a soda lake in Xinjiang, China. Int J Syst Evol Microbiol 55:149–152 [View Article][PubMed]
    [Google Scholar]
  25. Fernández A. B., Ghai R., Martin-Cuadrado A. B., Sánchez-Porro C., Rodriguez-Valera F., Ventosa A. 2014a; Prokaryotic taxonomic and metabolic diversity of an intermediate salinity hypersaline habitat assessed by metagenomics. FEMS Microbiol Ecol 88:623–635 [View Article][PubMed]
    [Google Scholar]
  26. Fernández A. B., Vera-Gargallo B., Sánchez-Porro C., Ghai R., Papke R. T., Rodriguez-Valera F., Ventosa A. 2014b; Comparison of prokaryotic community structure from Mediterranean and Atlantic saltern concentrator ponds by a metagenomic approach. Front Microbiol 5:196[PubMed] [CrossRef]
    [Google Scholar]
  27. Fuchs B., Schiller J., Süß R., Schürenberg M., Suckau D. 2007; A direct and simple method of coupling matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI-TOF MS) to thin-layer chromatography (TLC) for the analysis of phospholipids from egg yolk. Anal Bioanal Chem 389:827–834 [View Article][PubMed]
    [Google Scholar]
  28. Fullmer M. S., Soucy S. M., Swithers K. S., Makkay A. M., Wheeler R., Ventosa A., Gogarten J. P., Papke R. T. 2014; Population and genomic analysis of the genus Halorubrum . Front Microbiol 5:140[PubMed] [CrossRef]
    [Google Scholar]
  29. Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. editors 1994 Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology;
    [Google Scholar]
  30. Ghai R., Pašić L., Fernández A. B., Martin-Cuadrado A. B., Mizuno C. M., McMahon K. D., Papke R. T., Stepanauskas R., Rodriguez-Brito B., other authors. 2011; New abundant microbial groups in aquatic hypersaline environments. Sci Rep 1:135 [View Article][PubMed]
    [Google Scholar]
  31. Gouy M., Guindon S., Gascuel O. 2010; SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 27:221–224 [View Article][PubMed]
    [Google Scholar]
  32. Grant W. D., Kamekura M., McGenity T. J., Ventosa A. 2001; Class III. Halobacteria class. nov. In Bergey's Manual of Systematic Bacteriology, 2nd edn. vol. 1 pp 294–301Edited by Boone D. R., Castenholz R. W., Garrity G. M. New York: Springer;
    [Google Scholar]
  33. Guindon S., Dufayard J. F., Lefort V., Anisimova M., Hordijk W., Gascuel O. 2010; New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321 [View Article][PubMed]
    [Google Scholar]
  34. Gutiérrez M. C., Castillo A. M., Pagaling E., Heaphy S., Kamekura M., Xue Y., Ma Y., Cowan D. A., Jones B. E., other authors. 2008; Halorubrum kocurii sp. nov., an archaeon isolated from a saline lake. Int J Syst Evol Microbiol 58:2031–2035 [View Article][PubMed]
    [Google Scholar]
  35. Gutiérrez M. C., Castillo A. M., Corral P., Kamekura M., Ventosa A. 2011; Halorubrum aquaticum sp. nov., an archaeon isolated from hypersaline lakes. Int J Syst Evol Microbiol 61:1144–1148 [View Article][PubMed]
    [Google Scholar]
  36. Johnson J. L. 1994; Similarity analysis of DNAs. In Methods for General and Molecular Bacteriology pp 655–682Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  37. Kates M. 1986; Laboratory techniques. In Techniques of Lipidology pp 100–110Edited by Burdon R. H., van Knippenberg P. H. Amsterdam: Elsevier;
    [Google Scholar]
  38. Kean E. L. 1968; Rapid, sensitive spectrophotometric method for quantitative determination of sulfatides. J Lipid Res 9:319–327[PubMed]
    [Google Scholar]
  39. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H., other authors. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721 [View Article][PubMed]
    [Google Scholar]
  40. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar, Buchner A., Lai T., Steppi S., other authors. 2004; arb: a software environment for sequence data. Nucleic Acids Res 32:1363–1371 [View Article][PubMed]
    [Google Scholar]
  41. Maddison W. P., Maddison D. R. 2011 Mesquite: a Modular System for Evolutionary Analysis, version 2.75 http://mesquiteproject.org
    [Google Scholar]
  42. Makhdoumi-Kakhki A., Amoozegar M. A., Kazemi B., Pašić L., Ventosa A. 2012a; Prokaryotic diversity in Aran-Bidgol salt lake, the largest hypersaline playa in Iran. Microbes Environ 27:87–93 [View Article][PubMed]
    [Google Scholar]
  43. Makhdoumi-Kakhki A., Amoozegar M. A., Bagheri M., Ramezani M., Ventosa A. 2012b; Haloarchaeobius iranensis gen. nov., sp. nov., an extremely halophilic archaeon isolated from a saline lake. Int J Syst Evol Microbiol 62:1021–1026 [View Article][PubMed]
    [Google Scholar]
  44. Makhdoumi-Kakhki A., Amoozegar M. A., Ventosa A. 2012c; Halovenus aranensis gen. nov., sp. nov., an extremely halophilic archaeon from Aran-Bidgol salt lake. Int J Syst Evol Microbiol 62:1331–1336 [View Article][PubMed]
    [Google Scholar]
  45. Mancinelli R. L., Landheim R., Sánchez-Porro C., Dornmayr-Pfaffenhuemer M., Gruber C., Legat A., Ventosa A., Radax C., Ihara K., other authors. 2009; Halorubrum chaoviator sp. nov., a haloarchaeon isolated from sea salt in Baja California, Mexico, Western Australia and Naxos, Greece. Int J Syst Evol Microbiol 59:1908–1913 [View Article][PubMed]
    [Google Scholar]
  46. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3:208–218 [View Article]
    [Google Scholar]
  47. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5:109–118 [View Article][PubMed]
    [Google Scholar]
  48. McGenity T. J., Grant W. D. 1995; Transfer of Halobacterium saccharovorum, Halobacterium sodomense, Halobacterium trapanicum NRC 34021 and Halobacterium lacusprofundi to the genus Halorubrum gen. nov., as Halorubrum saccharovorum comb. nov., Halorubrum sodomense comb. nov., Halorubrum trapanicum comb. nov., and Halorubrum lacusprofundi comb. nov. Syst Appl Microbiol 18:237–243 [View Article]
    [Google Scholar]
  49. McGenity T. J., Grant W. D. 2001; Genus VII. Halorubrum . In Bergey's Manual of Systematic Bacteriology, 2nd edn. vol. 1 pp 320–324Edited by Boone D. R., Castenholz R. W., Garrity G. M. New York: Springer;
    [Google Scholar]
  50. Minegishi H., Kamekura M., Itoh T., Echigo A., Usami R., Hashimoto T. 2010; Further refinement of the phylogeny of the Halobacteriaceae based on the full-length RNA polymerase subunit B′ (rpoB′) gene. Int J Syst Evol Microbiol 60:2398–2408 [View Article][PubMed]
    [Google Scholar]
  51. Oren A. 2012; Taxonomy of the family Halobacteriaceae: a paradigm for changing concepts in prokaryote systematics. Int J Syst Evol Microbiol 62:263–271 [CrossRef]
    [Google Scholar]
  52. Oren A., Ventosa A., Grant W. D. 1997; Proposed minimal standards for description of new taxa in the order Halobacteriales . Int J Syst Bacteriol 47:233–238 [View Article]
    [Google Scholar]
  53. Oren A., Arahal D. R., Ventosa A. 2009; Emended descriptions of genera of the family Halobacteriaceae . Int J Syst Evol Microbiol 59:637–642 [View Article][PubMed]
    [Google Scholar]
  54. Owen R. J., Pitcher D. 1985; Current methods for estimating DNA base composition and levels of DNA–DNA hybridization. In Chemical Methods in Bacterial Systematics pp 67–93Edited by Goodfellow M., Minnikin D. E. London: Academic Press;
    [Google Scholar]
  55. Papke R. T., Koenig J. E., Rodríguez-Valera F., Doolittle W. F. 2004; Frequent recombination in a saltern population of Halorubrum . Science 306:1928–1929[PubMed]
    [Google Scholar]
  56. Papke R. T., Zhaxybayeva O., Feil E. J., Sommerfeld K., Muise D., Doolittle W. F. 2007; Searching for species in haloarchaea. Proc Natl Acad Sci U S A 104:14092–14097 [View Article][PubMed]
    [Google Scholar]
  57. Papke R. T., White E., Reddy P., Weigel G., Kamekura M., Minegishi H., Usami R., Ventosa A. 2011; A multilocus sequence analysis approach to the phylogeny and taxonomy of the Halobacteriales . Int J Syst Evol Microbiol 61:2984–2995 [View Article][PubMed]
    [Google Scholar]
  58. Papke R. T., Corral P., Ram-Mohan N., Haba R. R., Sánchez-Porro C., Makkay A., Ventosa A. 2015; Horizontal gene transfer, dispersal and haloarchaeal speciation. Life (Basel) 5:1405–1426[PubMed]
    [Google Scholar]
  59. Parte A. C. 2015; List of Prokaryotic Names with Standing in Nomenclature. http://www.bacterio.net
  60. Pesenti P. T., Sikaroodi M., Gillevet P. M., Sánchez-Porro C., Ventosa A., Litchfield C. D. 2008; Halorubrum californiense sp. nov., an extreme archaeal halophile isolated from a crystallizer pond at a solar salt plant in California, USA. Int J Syst Evol Microbiol 58:2710–2715 [View Article][PubMed]
    [Google Scholar]
  61. Ram-Mohan N., Fullmer M. S., Makkay A. M., Wheeler R., Ventosa A., Naor A., Gogarten J. P., Papke R. T. 2014; Evidence from phylogenetic and genome fingerprinting analyses suggests rapidly changing variation in Halorubrum and Haloarcula populations. Front Microbiol 5:143[PubMed] [CrossRef]
    [Google Scholar]
  62. Rodríguez-Valera F., Ruiz-Berraquero F., Ramos-Cormenzana A. 1980; Isolation of extremely halophilic bacteria able to grow in defined inorganic media with single carbon sources. J Gen Microbiol 119:535–538
    [Google Scholar]
  63. Roh S. W., Bae J. W. 2009; Halorubrum cibi sp. nov., an extremely halophilic archaeon from salt-fermented seafood. J Microbiol 47:162–166 [View Article][PubMed]
    [Google Scholar]
  64. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  65. Sambrook J., Russell D. W. editors 2001 Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press;
    [Google Scholar]
  66. Smibert R. M., Krieg N. R. 1981; General characterization. In Manual of Methods for General Bacteriology pp 409–443Edited by Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. B. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  67. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849 [View Article]
    [Google Scholar]
  68. Stackebrandt E., Frederiksen W., Garrity G. M., Grimont P. A. D., Kämpfer P., Maiden M. C. J., Nesme X., Rosselló-Mora R., Swings J., other authors. 2002; Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int Syst Evol Microbiol 52:1043–1047[PubMed]
    [Google Scholar]
  69. Stamatakis A., Ludwig T., Meier H. 2005; RAxML-III: a fast program for maximum likelihood-based inference of large phylogenetic trees. Bioinformatics 21:456–463 [View Article][PubMed]
    [Google Scholar]
  70. Subow N. N. 1931 Oceanographical Tables Moscow: Oceanographical Institute of USSR, Commissariat of Agriculture of USSR, Hydro-Meteorological Committee of USSR (in Russian);
    [Google Scholar]
  71. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. 2011; mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739 [View Article][PubMed]
    [Google Scholar]
  72. Ventosa A., Gutiérrez M. C., Kamekura M., Dyall-Smith M. L. 1999; Proposal to transfer Halococcus turkmenicus, Halobacterium trapanicum JCM 9743 and strain GSL-11 to Haloterrigena turkmenica gen. nov., comb. nov. Int J Syst Bacteriol 49:131–136 [View Article][PubMed]
    [Google Scholar]
  73. Walsh D. A., Bapteste E., Kamekura M., Doolittle W. F. 2004; Evolution of the RNA polymerase B′ subunit gene (rpoB′) in Halobacteriales: a complementary molecular marker to the SSU rRNA gene. Mol Biol Evol 21:2340–2351 [View Article][PubMed]
    [Google Scholar]
  74. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E., other authors. 1987; Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000738
Loading
/content/journal/ijsem/10.1099/ijsem.0.000738
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error